Feeds:
Posts
Comments

Archive for the ‘Native plants and wildlife survival’ Category

The wild Elwha river

In the remote corner of Washington state deep in the rain forest of the Olympic National forest a river is about to be set free.  Also set free will be thousands if not hundreds of thousands of native plants and at least seven
salmon species including the Chinook, steelhead, chum, coho, sockeye, bullhead and pink salmonids. (1)  And the river has been home to the Klallam people for millennia.

Much of the river moves fast and wild with intense churning power. River water crashes against large boulder and granite walls and then it rounds a corner and spreads itself out in flat valleys, seeming to sleep and mosey along. The kayakers dream journey, this place has remained pristine because it is locked within the vast wilderness boundaries of the Olympic National Forest.  The Hoh Rainforest is to the north, Hurricane ridge of Mount Olympus tower above the river.  The source of the clear cold fast waters comes from this mountain also.  To the north the river drains into the Strait of Juan de Fuca and it’s diverse ocean estuaries.

Giant red cedar, majestic western hemlock, Sitka Spruce, Douglas fir and big leaf maple line the river banks.  Youthful willows and red alders sprout on the river sandbars.  In other places trees over four centuries old still stand tall or lay in the forest acting as a “mother” tree to thousands of other native plants.

THE DAM REMOVAL BEGINS

On September 16th, 2011 a ceremony was held near the Elwha dam on the Olympic Peninsula of Washington State to mark the starting of the removal of two dams that bloc salmon spawns on the Elwha river. The two dams – Elwha Dam (108 feet tall, built in 1913 just five miles from the river’s mouth) and Glines Canyon Dam (210 feet tall, (Lake Mills)  built in 1927, several miles upstream of Elwha Dam) were built without fish passage, and completely blocked salmon from historic habitat.

A little over 100 years ago the Elwha river was dammed to create hydroelectric power.   Once the Elwha dam was put in place the river backed up behind and created what was called Aldwell Lake.   It was named after the man who built the dam.  This same man failed to build fish ladders on this dam and one further up the river called the Glines Canyon Dam.  In the last hundred years the vast salmon runs that swam the upper 38 miles of the river ceased, and the river ecosystem was damaged. The altering of the ecosystem was extensive. River sediments used by the salmon to lay eggs were diminished and the water in the river began to warm.  Salmon runs feed the plant life and sustain the health of the land and the forest.   Vast numbers of native plants were swamped by the damning of the river.  Before the dam the salmon runs numbered more than 400,000 fish annually. After the dam was built the count of salmon on the lower river was estimated at 4,000 fish annually.

The return of salmon to this ecosystem will return vital marine-derived nutrients to the watershed, restoring a vital food source for the range of life that inhabits it.

What is the relationship between salmon runs and native plants, forests and wildlife health?

THE SALMON – giver of life

Salmon Varieties - Elwha river

Salmon swim up streams and rivers, spawn and die.  Their carcasses create excellent fertilizer that is full of ocean minerals and nutrients. When a salmon run is destroyed native plant  and forest diversity also suffers.

Fish help create diversity and range of native plant habitat by helping to move plant seeds, roots and branches along the rivers and streams.  Some plants have parts that
break off when fish eat them, or swim through them, and the plant may float to a different area and root.

ECOSYSTEM RESTORATION HAS BEGUN

Today, the Elwha River is the site of one of the largest ecosystem restoration projects in National Park Service history. As part of the effort to restore the Elwha River ecosystem, the Olympic National Forest personnel and volunteers have been constructing a new native plant nursery called the Matt Albright Native Plant center. After the Glines Canyon and Elwha dams are removed and the reservoirs drained, hundreds of thousands of native plants will be used to restore native vegetation to the over 700 acres of lakebed that will re-emerge after the reservoirs are drained. Stabilization of the new banks to control sediment movement downstream is crucial in preserving native salmon habitat in the lower river and estuary.

For more on this project go to the website for the Friends of Olympic National Park

THE INTERRELATIONSHIP BETWEEN SALMON AND FOREST

In a recent study conducted by biologists with Simon Fraser University researchers concluded that Salmon contribute to the diversity and health of the forests.  The study showed not only did the carcasses of  the spawned-out salmon benefit stream side plants but that bear and wolves will often carry the carcasses into the forest and further “feed” the forest.

The study was extensive and covered the interrelationship between salmon and forest ecosystems bordering 50 streams on the remote central coast of British Columbia, Canada.

Link to study: http://insciences.org/article.php?article_id=9994

In addition to restoring the fish habitats, the draining of Lake Mills (and removal of  and Lake Aldwell will create an additional 715 acres (2.9 km2) of terrestrial vegetation, improving elk, insect, bird and other wildlife habitats as well. Increased sediments loads are also predicted to help restore the retreating delta at the mouth of the Elwha.

The $325 million project is expected to last three years and eventually restore the Olympic Peninsula river to its wild state and restore salmon runs.

For more on Pacific Northwest Salmon recovery project check out this beautifully illustrated booklet that includes lists of native plants that benefit Salmon.

http://www.co.snohomish.wa.us/documents/Departments/Public_Works/SolidWaste/Information/Brochures/salmonfriendlybro7-10WEB.pdf

For more on Salmon life cycles check out:

http://www.oregonwild.org/fish_wildlife/wildlife-pages/coho-salmon?gclid=CP6n8aPLt6sCFQdzgwodq10OeQ

References

(1)  Potential range map of seven salmon salmonids on the Elwha river. Website: http://www.nps.gov/olym/naturescience/potential-range-of-salmonids-in-the-elwha.htm

Advertisements

Read Full Post »

I went into the forest today to be thankful for the bounty and ask Great Spirit who loves us all to teach me about these amazing beings we call plants. I had that feeling I often have that I once lived in the forest with my tribe and my people. I feel at home in that forest. The farmers have brought in honey bees and the oak and maple have attracted the bees and other pollinators.  The air is churning with activity.  It is like a natural air conditioner swirling above me. The sound of the bees is so loud that I can barely hear the other sounds of nature.  Wildflowers are blooming everywhere: trillium, bleeding hearts, coral bells, false Solomon seal.  The pinks and buttercups and the wild berries are all in bloom.  The smell of the forest is sweet and musky all at once.

I have in my life time been introduced to many native plants and I have been taught about how everything is connected to this forest, even humans belong here if they will just slow down to be at peace with this place. 

It is spring and I am collecting many starts: cuttings, roots, sprouts.  Once they have roots and are strong, I will put them in pots and take them to the nearby farmers market and try to teach others about opening up their garden doors and letting the native plants back in.  It is important.  We are losing the pollinators and the fertility of the soil, and the hillsides and streams and rivers because we take out the native plants. We call them weeds and poison and chop and throw them away. These plants are our future and our hope.  Once gone, so goes our food, medicine, clean water, clean land, and beauty so great that our essential energy is affected and changed for the better.

Soon at the local farmers market I will be setting up my table and handing out simple brochures on how to incorporate native plants into gardens, farms, parks, roadsides and river and stream banks. I will sell the plants to support the overall Radical Botany project and to give back to the farm I am living on now. Carly, the land owner is allowing me to finally have a home for me and my plants.  I have moved a half dozen times in the last five years, always carrying my many plant friends with me.  We are tired. We need a real home that is safe and long term. I think I am home. I love this land. I am thankful for this land. I respect this land and the creatures and people who live here.

Thank you Great Spirit who loves us all for bringing me home.  Thank you Carly, Deb, Mitchell, Annie,  the farmers for inviting me in from the cold.

Here is a list of a few of the plants I saw today and why they are important:

Common Name Scientific Name    Ecological  Importance  and Human Use
Pacific Willow Salix lucida ssp. Salix lasiandra              

The catkins will attract insect and hummingbird pollinators, and all willows are used as butterfly host plants.

The same for Hooker’s Willow

The Fraser River Lillooet  called Pacific Willow the “match plant”.  They dried the wood and used it for both the hearth and the drill in making friction fires. The ashes were mixed with diatomaceous earth and were made into a fine white powder to treat wool.

Hooker’s Willow Salix Hookeria   The bark was used in shingle baskets, the young plants were split into twine and made into rope.
Pacific Ninebark Physocarpus capitatus Used to make small tools, but was also used as a laxative and needs to be handled properly. The flower attracts many insect pollinators and the birds will eat the berries of the plant. Beautiful shredding bark, this plant is found along streams, rivers and wetlands.
Oceanspray Holodiscus discolor Found in dry to moist, open sites (open woods, clearings ravine edges and coastal bluffs).  Commonly called ‘Ironwood” because of the hardness and strength of the wood. Was used to make digging sticks, spears, harpoon shafts, bows and arrow shafts by almost all coastal groups from BC southwards.  An infusion of berries was used to make a tea that was used to treat diarrhea. Also used as a blood tonic.  May attract as many as 50 pollinating insects.The flowers provide nectar for butterflies and insects. A caterpillar host plant for Pale Tiger Swallowtail, Lorquin’s Admiral, Echo Blue, Brown Elfin, and Spring Azure but­terflies. Oceanspray provides foraging habitat for insectivorous birds including Bushtits and Chickadees
Red Elderberry Sambucus racemosa Found along stream banks, swampy thickets, moist clearings and open forests, sea level to middle elevations. The unripe or uncooked berries are toxic can cause stomach cramps or worse. They should  always be cooked even when making Elderberry wine or jellies. The stems, bark leaves and roots, especially in fresh plants, are toxic due to the presence of cyanide-producing glycosides. Elderberry is an important caterpillar host plant and its white flowers attract hummingbirds.
Thimble berry
Rubus parviflorus

 

Has a white flower – petals crinkle tissue paper. Found in open sites such as clearings, road edges, shorelines etc. Has a red, raspberry-like cluster berry. The flower favorite of bumblebees and native pollinator insects. Spreads by rhizomes. Eaten by all Northwest Coast people.  Some people also collected and ate the early shoots. The berry can be easily dried.  Often mixed with Salal berries for winter food (dried).  Often mixed with native raspberries and blackcaps and used in a dried cake for winter food. The large leaves were often made into berry collecting containers.

 

Salmon berry
Rubus spectabilis

 

Has a pink to reddish purple flower. Found in moist to wet places of forests and disturbed sites. Often abundant along stream edges, at low to subalpine elevations. This wonderful wild berry blooms very early and attracts the earliest pollinators.  The berries arrive early in the season and attract several song birds. Both sprouts and berries were eaten by First Peoples.

 

Nookta Rose Rosa Nutkana Found in open habitats (shorelines, meadows, thickets, and streamside areas). Was often used in pit cooking. The leaves were placed over food for flavoring.  Tea from the bark were used as an eye wash. The chewed leaves were applied to bee stings and the ripe hips were cooked and fed to infants for diarrhea.Its seed-filled hips are full of vitamins A & C and are eaten by a variety of birds and mammals. Bees and but­terflies seek nectar from its flowers. A caterpillar host plant for Western Checkerspot, Mourning Cloak, and Gray Hairstreak butterflies.
Indian Plum Oemleria cerasiformis The flowers arrive very early spring to late winter – often before its leaves appear.  Important food source for pollinating insects, butterflies and the fruit is eaten by many woodland animals.  The fruit can be quite bitter and astringent so it was often mashed with sweeter berries such as Salal.  It bark was used to make tea that was used as a purgative and tonic.
Bleeding hearts Dicentra Formosa Pink heart-shaped flower. Found in moist forests, ravines, streambanks; low to middle elevations. Its namesake pink flowers attract hummingbirds and its rhizomes are reported to be medicinal by some, toxic by others. Ants feed on an oil-rich seed appendage. Bleeding heart is an important caterpillar host plant for the Clodius Parnassian.
White Oak or Garry Oak Quercus garryana A beautiful, heavy-limbed tree that is very important in helping to maintain the integrity of several low-lying ecosystems. Found in dry, rocky slopes and bluffs, sometimes in deep, rich well-drained soil. The springtime catkins (flowers) are highly attractive to honeybees and many native insect pollinators. The acorns are an important food source for ducks, deer, squirrels and other wildlife.  First peoples used the bark as one ingredient in the Saanich “4 barks” medicine used against tuberculosis and other ailments.
Big leaf Maple Acer macrophyllum Large, often multi-stemmed.  In the spring the flower will often appear with or before the leaves.  Found in dry to most sites, often with Douglas-fir, often on sites disturbed by fire, at low to middle elevations. Bigleaf maple supports a large ecosystem on its trunk, limbs and stems. These symbiotic relationships are important to native forest. Living on this tree you will often find: mosses, lichens, ferns, fungi, herb-like plants, small flowering plants etc. Many parts of the tree were used for food, medicine and utility.  Insects and bees pollinate the tree and produce about 1000 pollen grains (55µm each) for an individual flower.  Important solitary bees such as the Blue Orchard Bees, Osmia lignaria, are attracted to this tree
Fringecup Tellima grandiflora In the Saxifrage family. Found in  moist forests, glades, stream-banks, thickets and clearings; common from low to middle elevations. The Skagit pounded fringecup, boiled it and drank the tea for any kind of sickness, especially lack of appetite. Provides habitat and cover for small insects.
Yellow Wood Violet Viola glabella A common perennial in moist, shaded forests. Its flowers are yellow, with some petals boasting violet streaks. The flowers have a small spur which provides an excellent landing platform for insects, which are attracted to its nectar. A caterpillar host plant for a variety of butterfly species. Also known as stream violet.
Stinging Nettle Urtica dioica Common in moist, rich soil, often in disturbed habitat, nettles are a tasty green if cooked, a valued medicinal herb, and traditionally a good source for strong plant fiber. Nettles are also an important caterpillar host plant for the Milbert’s Tortoiseshell, Satyr Anglewing, and Red Admiral butterflies.
     

Read Full Post »

Click for larger image

I use a two step method of identifying plants.  I first use a profile sheet that allows me to check off key parts of a particular plant, make a sketch and collect plant samples. Then I “key” out the plant data I have collected. This allows me to indentify just about any plant I find in the wilds or in the city.

 I carry the profile sheets in my back pack when I go out in the woods or nature.  I take my color pencils with me and my profile sheet has a place on it where I draw the plant I have found.   I will put a link to an example of a good plant profile sheet you can use.

Once I have collected information about the plant I can begin to “key” the plant.

The key was actually devised over many years and categorizes the plant parts into plant family, genus and species.  You can view the key as a series of questions you answer that will allow you to get closer and closer to identifying a plant.

Pojar and MacKinnon have a great key at the beginning of each section in their book.  The Species are grouped as follows: Trees,  Shrubs, Wildflowers, Aquatics, Oddballs, Graminoids, Ferns and Allies, Mosses and Liverworts, and Lichens.

HOW TO BECOME AN EXPERT AT INDENTIFYING ANY PLANT

STEP ONE: Learn the basic parts of a plant.  Here is a link to a good source online that teaches you about the 19 basic botanical parts.

STEP TWO:  fill out a profile sheet on the plant you are trying to identify. Here is a sample of an online profile sheet

STEP THREE:  Key out the plant.  It is important to use a plant book that is designed to cover plants from your region of the world and includes plant keys.

 You choose family first.  Look at the plant and decide where it might fit.  It is a tree, a shrub, a wildflower, grass or sedge? Choose one.  Let’s say that we have come upon a tree.  Look at it and use a profile sheet to gather some information about this tree.

Here are the questions that you may want to answer.

Stem and Leaves

Stem where leaf is attached:  stipules?   no stipules?

Leaf blade  smooth edges?    toothed edges? 

Leaf petiole   long?    normal?   absent?

Leaf type (look for buds) ”  simple? ”  compound?

Arrangement of leaves (at nodes)  alternate?  opposite?  whorled?  spiral?

Needles?  Are they flat?  Round?  In groups of 2 or 5?  Other?

Next: draw a picture of the tree, its shape over all.  What does the bark look like?  Look closely at the leaves or needles.  Does the tree have a cone or flower? Take a sample.  Put it in a collection bag to study.

Now you have a profile sheet and can use a key to study what you have collected.

In the Pojar and MacKinnon book you will find small pictures that will allow you to identify the tree type.  Then you will be asked if the tree has leaves or needles and depending on what you choose to answer, you will progress to deeper information.  The key uses deduction.  Here is an example.  Let say I am trying to identify that tree again.  I am pretty sure it is a pine tree of some sort.  I look at the key for trees.

1a.  Leaves needle-like or scale- like evergreen, seeds usually in cones, not enclosed in a fruit (like a conifer).

2a – Leaves scale-like concealing the twigs                         Or

2b – Leaves needle-like, not concealing the twigs

 I CHOOSE 2b.

Under 2b I find other choices:

Needles in clusters?

Needles in clusters of 5?…..then it is a Pinus monticola

Needles in cluster of 2?……then it is a Pinus contoria

 My tree has needles in clusters of 5 –  I find that the tree is a Pinus monticola or a Western White Pine.

Pretty easy!   The trick is to have a good book that has a well prepared key.  It gets far more complex when you start trying to identify plants that flower or grasses and sedges.

If you really want to learn plant profiling and keying…pick up a copy of Elpel’s “Botany in a Day”. Thomas Elpel uses the patterns method of plant identification.  He teaches plant parts for profiling. He has keys for all the plant species and families. And, he teaches you how to understand important patterns found in the plant kingdoms.

Elpel also teaches about the hierarchy of the plant kingdom, from top to bottom.  Here it is for review:

Division (phyla)

            Class

                        Subclass

                                    Order

                                                Family

                                                            Genus

                                                                        Species

 The last three divisions are what most plant identification books and plant keys focus on. Profiling a flower is much harder than profiling a tree.  There is just so much more to know.  Basically flowering plants can be categorized into two classes:  Dicots and Monocots.

 What division of the plant kingdom does your flowering plant belong to?  Is your plant a monocot or a dicot?  Is your dicot plant a member of the Aster family?  How many petals does it have? These are just a few questions that help you profile your plant. Once you have answered these questions you will be able to easily find the right key for the plant.

 Here is some basic information about flowering plants.

 Dicots:  (two seed leaves, netted veins, usually tap rooted, usually complex branching, floral parts mostly in 4’s and 5’s.)there are simple flowers and complex flowers.
Monocots: (one seed leaf, parallel veins in the leaves, horizontal rootstalks, usually simple branching, floral parts mostly in 3’s)

 Flower types include simple and complex classes.  These classes include Buttercup, Rose, Gentian and Aster, Arrowhead, Lily, and Orchid.

 “Botany in a Day” will help you identify the correct family of a plant.  It is much easier to identify the proper genus or species of a plant after you have accurately identified the proper family. Use Botany in a Day to find the correct family, then you can use color picture books to help narrow down choices.  

 Elpel’s book has pictures and explanations of these flower types. He also has included profile pages specifically for flowers. He also covers the evolution of plants.   Visually viewing the actual plant is essential to learning about it.  And the viewing needs to include deep study of each part of the plant.   Once you understand the patterns of each plant family you will easily be able to identify and “key” the plant. 

For instance: the pattern of the Mustard family:  4 petals and 6 stamens – 4 tall 2 short.

 The pattern of the Mint family is that it has square stalks and opposite leaves, often aromatic.

 There are plenty of resources on the internet to help you identify plants also.  Here is a link to a plant guide put together by the US Department of agriculture.  It is plant guide for the Common Snowberry – http://plants.usda.gov/plantguide/pdf/cs_syal.pdf 

Create a study group or skillshare to learn about plants.

 One thing you might consider doing is creating a study group or skillshare group using “Botany in a Day” and other books to learn together.  You might have people in your group who know a few plants and be willing to share with you.

 One last thing: storytelling.  I need storytelling to remember things.  I have a Celtic mind and soul.  Because I love storytelling I am fascinated with ethnobotany.  Ethnobotany discusses how the plant was used by indigenous peoples.  Pojar and Mackinnon’s book includes the ethnobotany of the each plant.  I have also included two great references with this essay.  Erna Gunther and Nancy Turner have great books about the ethnobotany of plants in the Cascadian bioregion.  

I wish to acknowledge my plant teachers who taught me to be able to identify plants through profiling and keying. My favorite plant identification teachers are Thomas J. Elpel who wrote” Botany in a Day”, and Jim Pojar and Andy MacKinnon who edited” Plants of the Pacific Northwest Coast”.

Hope this explanation helps you get started on how to identify plants.  Until next time – see you in the deep woods!

 Next time: Wapato – the liberation plant

 References

 Gunther, Erna (1945) Ethnobotany of Western Washington, The Knowledge and Use of Indigenous Plants by Native Americans, University of Washington Press, Seattle and London.

Elpel, Thomas J. (1996) Botany in a Day:  The Patterns Method of Plant Identification, Herbal Field Guide to Plant Families, 4th Ed (2004) HOPS press LLC, Pony, Montana

Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Turner, Nancy J. (1979) Plants in British Columbia Indian Technology, British Columbia Provincial Museum, Victoria, British Columbia, Canada

Online resources

Thomas Elpel’s website: http://www.wildflowers-and-weeds.com/

Website of Pojar and Mackinnon’s book “Plants of the Pacific Northwest Coast” http://www.lonepinepublishing.com/cat/9781551055305

US department of agriculture plant guide:  http://plants.usda.gov/plantguide/pdf/cs_syal.pdf

Read Full Post »

Shooting stars at Mt. Shasta

“The day man experienced the consciousness that made him feel separate and superior to the other forms of life, at that moment he began sowing the seeds of his own destruction.” (U. G. Krishnamurti) 

I am on a journey, a quest to save native plants from destruction by our mechanized minds and world.

I want to try and save what is left of the natural world. I think it is important. I want there to be a beautiful, healthy, safe world for my children, my grandchildren and  for seven generations after me.  There are so many beautiful parts of God’s creation worth saving. It all needs to be saved.  The web of life fits together like a puzzle. When one part goes missing, the rest is weakened. I choose to try and save native plants.

We have been going down this path for some time. Most humans are oblivious to what is happening to our planet, or they choose to close their eyes and try to ignore it.  I choose to teach about native plants because they choose me and I would not want to live on this planet if all the plants were gone. In fact, none of us could.

All parts of the web of life are worth saving.  The polar bears, the whales, the brown pelican, the hummingbirds, the great trees and the great forests are all worth saving.  The water and the air and the earth are needed for the web of life to survive. They are all worth saving.  Each of us who understands the importance and immediacy of saving the planet will need to choose where to focus. I choose native plants.

I am almost old and I have been on this journey for some time. I have been blessed to have good teachers.  When I was a child living near the forest I only knew a few names of the plants.  I spent years exploring the forest before I found a good teacher to tell me about the plants. The plants were always there for me, healing me, and helping me through loss and in times of wonder.

I walked through the forest speaking to the birds, the tree,  and the other plants. I built a nest in a tall Red cedar tree and climbed the great oak. I carried a pad and pencil with me into the forest and sat for hours watching the forest, observing the plants and wildlife. I made note of how the petal of a flower connected to the stem and how the stem connected to the root. I drew pictures of what other plants might be growing nearby so I could remember how to find it again.  I was amazed at the ingenuity that plants develop in order to survive.  I observed that the natural world is a place of connections.  Nothing is alone. I saw how the native plant connected to all species including humans.

I had teachers when I was a child who told me stories about the plants: grandma and my wonderful father.  Very little was taught to me in grade school or high school about native plants. I remember being told not to eat anything in the forest because it was probably poisonous.  In fact as a women I was only allowed to take one science class in high school.  What I learned later from history books was that for thousands of years women were the keepers of plant knowledge.  As Black Elk said: the world has turned upside down.

I combed over books. I looked for pictures and I looked for thehistory of the plants.  I never took a botany class in college although I had many mind-numbing science classes.  I did not want to memorize factoids, I wanted to understand and know the plants. I did not want my childhood wonder to be destroyed by long intense lectures and pressure to “get the grade”.  And yet I have learned that it is helpful to learn about plant kinship.

So I asked myself: how could I teach others about native plants?  What would I want them to know?  How could I get other humans to understand that native plants are not on this planet just for our pleasure?  Would I teach you one plant at a time?  Or would I teach you all about “keying” plants using the “binomial nomenclaturemethod of plant identification.  I surmised that people learn differently.  So I will be teaching all three methods, keying, “binomial nomenclature” and grandma’s way.

Grandma

Who was grandma?  She was an older woman who lived across the fields and forest from me when I was a child.  She loved the natural world. She was patient and kind and a very good teacher. I discovered her one day in a field of Queen Anne’s lace collecting the tiny purple flower found in center the plant. She was going to make dye for fiber baskets. We struck up a friendship. She told me many stories about the plants and I am forever grateful that she taught me about native plants.

If I was to try to teach you about native plants using grandma’s method I would take you on a walk in the forest.  I would ask you to bring a notebook and a pencil. I would find a place that attracted me. We would sit amongst the plants and we would be quiet and observant. I would ask you to write what you are observing. I would ask you to make notes about the weather, the time of year, the condition of earth: is it wet or dry? Does it have a smell?  I would wait until a particular plant came to me attention. And then I would ask you to observe it as I told you a story about this plant. It might be a story about its structure or connection with the forest. Or it might be a story about how to use the plant for food, medicine or how it might feed and attract wildlife.  If it is edible, I would ask you to taste it. I would ask you to find its flower and draw a picture of it.  I would ask you to write about how it connects to the rest of the forest.  I would try to tell you a story about how the First People’s used this plant. I would hope that this story would help you remember it. This is my way of learning and teaching.

Shooting Star (Dodecatheon jeffreyi)

 Over the years I have carried my water colors into the wild places and tried to capture the beauty of plants in their own spaces.  I rarely pick wild flowers. I have attached a painting I did of Shooting stars in a meadow just below Mt. Shasta in Northern California.  The variety is called Tall Mountain Shooting Star (Dodecatheon jeffreyi).  This plant is so beautiful.  Pojar and McKinnon in their book “Plants of the Pacific Northwest Coast” describe the special relationship between Shooting stars and bumblebees. The Shooting star they say provides a good example of “buzz pollination”. Pollen is shed into the stamen tubes of the flower. The sound waves set up by the buzzing of the bumblebee dislodges the pollen and makes it available to the bee. A member of the primrose family (Primulaceae) the plant is most often found in moist meadows. The First peoples of the Willamette Valley, Okanagan, and Yurok tribes mashed the flowers and used the stain to dye fibers and wood.

There – I just taught you a little about this plant. Where to find it, what it was used for and how it interacts with wildlife. That is the way I like to teach. But there are others and I cannot always be with you.

So until next week – See you in the deep woods…

Next time:  Kinship and the “Keying” of  plants – teaching you to be self sufficient in your learning.

References:

Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Turner, Nancy J. (1979) Plants in British Columbia Indian Technology, British Columbia Provincial Museum, Victoria, British Columbia, Canada

Read Full Post »

Fenders Blue Butterfly and the Kincaid Lupine

I attended a wonderful talk at the Straub Environmental Center is Salem, Oregon last night.  The speaker Gail Gredler an instructor at our local community college spoke about creating native plant gardens. She answered a lot of questions I had about what is a native plant and why are they important to humans and to the planet.

What is a native plant?

First, according to Gail a native plant can be described as plants growing before European settlements started about 200 years ago. Other sources I found also describe them this way: “A native (indigenous) species is one that occurs in a particular region, ecosystem, and habitat without direct or indirect human actions” (Kartesz and  Morse 1997; Richards 1998

Gredler explained that trying to say what is native and what is not is getting harder because some plant specialists are cloning and messing with the DNA of native plants to create “nativars”.  These mad scientists (my judgment) are creating these bio-modified cloned plants so they can patent the plant and make money on each sale of the plant or its seeds.  Bio-modification is not made with ecosystem health in mind so we don’t know if there will be detrimental effects.  People are beginning to sell the look-alikes as natives and so it is important to find a native plant nursery that is registered.  (See resource list at end of this article).  Insects may or may not recognize the plant chemicals of these “nativars”.  Some research on bio-modified corn and other grain crops are showing that insects will not pollinate the crops because the plant chemicals are toxic to the pollinator. The bio-modified grains are causing issues with human and animal health also.

Insects need native plants to survive.  We need insects alive so that our food and medicine and utility plants can be pollinated and fertilized. Without insects and native plants our biome will experience an ecological collapse.

 Ke Chung Kim an entomologist with Penn State University writes in his book “Biodiversity, conservation and inventory: why insects matter”, that insects and anthropods have existed for more than 400 million years and after surviving the Permian and Cretaceous mass extinctions, arthropods have been the most successful of all living things and along with other invertebrates constitute more than three-quarters essential for human food production, and maintaining rain forests, savannahs and other important components of global water storage in ecosystems.

 Without insects we would experience complete eco-system collapse. Native plants are the only food that many pollinator insects will consume. Without native plants, many insects such as the Fender Blue butterfly, the Franklin’s Bumble Bee (Bombus franklini) and Mason bees (Osmia cascadica) will become extinct.  Bringing native plants back into our environment is essential to the survival of humans, fauna and flora. Once the insects are gone, then will fall the birds, squirrels, foxes, rabbits, deer, and other fauna. The food chain will collapse.

According to Gredler 90% of insects depend on native plants for food. Local insects evolved with native plants and are attracted to particular leaf chemicals.  The leaf chemical allows the insect such as the Fender Blue butterfly and pollinators to find food. Only 10% of insects are generalist feeders.

Here are 7 reasons on why native plants are important according to Gredler.

  1. Resource conservation:  Native plants do not need a lot of extra water. They are drought resistant. Most native plants that would grow in Oregon and (Washington, British Columbia) valleys do not need extra water in the summer time. They need well adapted to our dry summers.
  2. Save on the use of fertilizers and pesticides:  Native plants do not need pesticides. They are already acclimated to insect populations and can take care of themselves, thank you.  Fertilizers are applied sparingly.  Having plants grow in correct soil types is more helpful.
  3. Insects need them to survive. As already mentioned: 90% of insects depend on native plants for their survival. 37% of animal species eat herbivorous insects.
  4. Native plants in landscapes will stop the desertification of Cascadia.
  5. Habitat fragmentation is a hazard to wildlife.  Bringing natives back will stop the ecosystem collapse. Native plants provide food, water, and habitat for wildlife.
  6. Plants are the only thing on the planet that can harvest the sun’s energy and create their own food.
  7. Native plants are not necessarily aggressive and can be out done by non-natives. They will need our help to come back.  We need to stop planting aggressive non-natives like the Butterfly plant.

Here are few more from other sources:

8.  Native plants are important to human health. The vast array of natural chemicals is already the basis for ~25% of all U.S. prescriptions, ranging from aspirin (bark of willow tree) to taxol (bark of pacific yew tree).  These plant based medications easily break down in our ecosystems unlike pharmaceutical synthetic hormones and drugs. Use native plants for healing and stop the chemical soup poisoning of our world.

9. Native plant heritage: plants were used for almost everything that humans needed to survive. Think what the world would be like if we stopped producing toxic plastic “stuff” and went back to living simply with few things, essentials made from plants: clothes, homes (not from trees but from fast growing plant fiber and earth such as in Cob buildings).  Paper not made from our forests but from fast growing plant fibers. Humans lived with this technology for hundreds of thousands of years.  We may have to adjust to new ways of living to survive.

10. Native plants can be used to restore our land.  They easily adapt to harsh conditions and have been used in the repair of streams, meadows, savannahs, forests, and other fragile landscapes.

According to Gredler since the 1840’s over 80 million acres have been taken out of native landscapes.  Landscapes have been paved over, planted in non native turf grass and tilled for non native crops.  Gredler called this process the “desertification of Oregon”.  I call this process the desertification of Cascadia because this destruction of the bio-region is happening everywhere.

According to my other source Kartz and Morse, although only about 737 native plant species are protected by the Endangered Species Act, it is estimated that nearly 25 percent of the 20,000 native plant species in North America are at risk of extinction. It is becoming generally recognized that in order to preserve individual species, their plant communities must be preserved. This includes the preservation of native plants that are not yet in danger of extinction, but still play an important role in native ecosystems.

Native plant species provide the keystone elements for ecosystem restoration. Native plants help to increase the local population of native plant species, providing numerous benefits. There are specific associations of mycorrhizae with plants, invertebrates with woody debris, pollinators with flowers, and birds with structural habitat that can only be rebuilt by planting native plants.

 We need your help.  Begin today to tear out the turf and aggressive non-natives and plant your yards to become a native plant repository and sanctuary.

Resources:

Where to find a list of reputable native plant nurseries in cascadia

1. Online PDF booklet of native plant nurseries in Oregon and Washington

http://extension.oregonstate.edu/yamhill/sites/default/files/wholesale_np_nurseries.pdf

2. Sources of Pacific Northwest native plants – a online Pdf booklet

http://extension.oregonstate.edu/yamhill/sites/default/files/sources_for_native_plants.pdf

3. The plight of the Fenders Blue Butterfly and its relationship to Kincaid’s Lupine

http://www.xerces.org/2010/12/10/saving-the-fenders-blue-butterfly/

If you would like to learn more about the relationship between insects and humans, animals and plants, check out the Xerces Society website at:    http://www.xerces.org

References

Kartesz, John, North Carolina Botanical Garden, and Larry Morse, The Nature Conservancy. 1997. Personal communication

Kim, Ke Chung (1994) Biodiversity and Conservation, Volume 2, Number 3, 191-214, DOI: 10.1007/BF00056668, Center for Biodiversity Research, The Pennsylvania State University. http://www.springerlink.com/content/q465056vr1t45u67/

Read Full Post »

« Newer Posts

%d bloggers like this: