Feeds:
Posts
Comments

Archive for the ‘Plant identification schemes’ Category

Earth’s the right place for love:

I don’t know where it’s likely to go better.
I’d like to go by climbing a birch tree,
And climb black branches up a snow-white trunk
Toward heaven, till the tree could bear no more,
But dipped its top and set me down again.
That would be good both going and coming back.
One could do worse than be a swinger of birches.

Excerpted from Robert Frost – “Birches”

white birch grove

White Birch Grove

Preparing to write about these lovely deciduous trees has been quite a journey.

I have found that what I know is only the tip of the iceberg of what I need to know.  The White or Paper Birch is a tree that I am slowly becoming familiar with. My early relationship was one of taking for granted that this tree would always be here for me to sing to, climb and use as crafting materials.  I did not ever imagine these lovely fast growing groves of trees could be used to heal, attract some of the most powerful healing fungi in the world or that they would one day be imperiled.

My father was a land surveyor and he sometimes took me and my siblings along for the day on his forays into the forested areas of Oregon. On a early summer day many years ago he took us on a walk along a coastal mountain stream.  The White Birch was plentiful and lovely.

We came upon a White Birch which had a broken branch half hanging.   He took some of the sap dripping from the broken tree, spread it over the wound, and then he took the shedding white bark for which it is known and used it to tie the branch back in place.   This is just one of the “signatures” of this tree.  Later I would learn that birch bark was used to set into a cast, the broken bones of humans.  On that day long ago, my father gave me some of the sap to chew and told me that it would be good for my teeth and mouth.  It was sweet and tingled in my mouth. I asked daddy about the bark.  I asked if I could remove some naturally occurring shedding white bark without white birch hanging barkharming the tree.  He told me that in other parts of the country, the bark was used to make canoes and to line baskets and wrap food and that it had probably been used as paper somewhere in the world. He told me there was time of year in the late spring and early summer when the bark was easy to remove without harming the tree.  He told me the tree sap was very healing as was the bark and that is why he used it to repair the broken limb.

Later I used some of the bark to make clothes for my doll and I made a small pouch to hold special things.  I made a small canoe that I could push across our pond.   I found sanctuary in the birch grove and sat in silence to watch the wild birds skip from branch to branch.  In late summer the tiny rounded samara became part of my secret cache of wild seeds.

This was my introduction to White Birch.  It was easy to interact with the community of birch. I can imagine now that it is this easy relationship to the tree and bark that attracted the First People. It is also easy for humans to take this tree for granted, not respect it.  As you will read, the White Birch is a powerful healer for both human and forest communities. It is a tree that welcomes the fungi mat (mycelium) and heals the wounds caused by fire, humans, disease and floods.

Betula papyrifera (Paper Birch, also known as American White Birch and Canoe Birch) is a species of birch native to the northern part of North America and the southern part of Canada.  The species birch is found all over the world.

PREPARING THE WAY – Birch, Alder, Aspen

Some trees are steady and slow in growth reaching to the tops of forests they create an umbrella for the web of life.  And, some trees are pioneers, growing fast, living a short time and creating a birthing platform for many other species. The White Birch is a pioneer species. The stands of White Birch come on fast and can grow only to about 20 meters high (65 feet). A healthy tree can live to be 40 or 50 years old. During their growth the pollen from birch catkins attract a great many pollinators that will bring life to other plants in the forest. The sap and bark attract a great many fungi that live symbiotically on the tree.  The fungi are then dispersed into the disturbed soils to help create the forest mycelium mat.  For a long time scientists and foresters thought the fungi found on the birch were a sign that the tree was dying.  They thought the fungi were killing the tree.  Now we know that the birch is a nurse tree to a great many beneficial fungi. It chooses which fungi will inhabit it and also has a chemical defense method that will trap certain fungi in the heartwood or on the outer barks.   The sap actually has pesticide qualities.  It detracts insects such as termites and certain bacteria that might do the tree harm. According to Grieve in her book A Modern Herbal, Birch tar was used to repel insects (p. 103)

Like the Red Alder and Aspen, the White Birch lives in symbiotic relationship with nitrogen-fixing bacterium.  This relationship is called mutualism. In mutualism: plants gain nitrogen compounds, the bacterium gains carbohydrate and an environment with reduced oxygen. The plant then changes carbon dioxide to oxygen and releases it for human use.

White birch as a pioneer deciduous species is often found in groves on the edge of newly formed second-growth tree communities or near the edges of changing forests. This tree shows up in ecosystems that have been disturbed by fire, flood or human decimation.  They can be found in open or dense stands of forest usually in an opening. They can be found in lowlands to lower mountain slopes in drained sites or along bogs and other wetlands.  B. papyrifera requires high nutrients and sun exposure.

These trees do not live long. From the time they spring up and then die, can be as little as 20 years or as much as 50 years. It is easy to propagate and the young saplings are often found spouting from a cut stump.  Like the Red Alder, the White Birch is a very important part of establishing the mycological forest community. Without these forerunners of forest health, there would not be a fertile soil and microbiological environment that would support the deep wild forest.

NAME

The name is a very ancient one, probably derived from the Sanskrit bhurga, ‘a tree whose bark is used for writing upon’ (Grieve, p. 103).  The First Peoples of the Cascadian bio-region have names for this tree also:

Salish = âîçêáÛ – birch bark

âîçêálî, îçêá white birch, paper birch, birch bark.

paper birch îçæálî, îçæá birch; paper birch.

The English name is White Birch, Paper Birch or Canoe Birch

The Latin botanical name is: Betula papyrifera

LEAF

white birch leafThe leaf is alternate, deciduous, oval to round and sharp-pointed. The leaf of the White Birch can be longer when on young trees. The color is dull green above and paler and hairy below.  The margins are doubly toothed. (Pojar and Mackinnon p. 47)

Learning the shape of the leaf is important because there are other trees that grow in similar environments that look much the same when young.  For instance bitter cherry has a similar bark and structure but the leaf is oblong to oval, and less pointy.

The FLOWER AND THE SEED

The flowers, and thus the seeds, of white birch are arranged in a pendant cluster about an inch long which is referred to as a catkin. Male white birch leaves-catkins-conesand female flowers are on separate catkins. When pollinated, the female flowers develop seeds, each of which is located on a scale in the catkin.

Male and female flowers grow in separate catkins and flower at the same time.  Sometimes there will be young leaves emerging as the tree flowers. The buds for the male catkins appear in autumn, when it begins getting cold.  During spring, the tassel-like catkin will produce yellowish or grayish green flowers that produce pollen with an aromatic scent.

Over the winter the catkins disintegrate, dispersing both seeds and scales.  You can identify the species of birch from the shape of its scales or nutlets.  Again, the white birch nutlet is round with wings that are broader than the body.

The male catkins will fall away from the tree, while the female catkins will form into cones in the summer. These cones vary from a deep brown to a tan, though they may also have a reddish color to them. During late summer, the cones will open and in autumn, the cones will fall, spreading their nutlets across the ground. The nutlets are then dispersed on the wind.

BARK

The tree is most familiar to us humans because of its bark.  The bark peels in papery strips in late spring and early summer. The bark of this tree is commonly thought of as being white or grayish white, but also comes in yellowish or dark gray.  It is often marked with brown horizontal lines of raised pores. The bark is highly weather-resistant. The wood itself is highly flammable and can be burned as firewood even when damp.

MEDICINE

Birch syrup is a sweetener made from the sap of birch trees, and used in much the same way as maple syrup. It is also used as medicine syrup.  The sap is boiled down to produce birch syrup.

The same sap is fermented to make beer and wine.  Birch beer is very popular in Northern Europe and a few areas of North America.

The oil is astringent, and is mainly employed for its curative effects in skin afflictions, especially eczema, but is also used for some internal maladies. Oil of wintergreen is distilled from its inner bark and twigs (Meyer p. 15)

The inner bark is bitter and astringent, and has been used in intermittent fevers. The bark is ground to a fine power and used to treat diaper rash.  It is also used internally to treat a great many inflammatory and bacterial infections.

The vernal sap is diuretic. The resin contains zylitol, a disinfectant used as a natural tooth cleaner. However, it may also contain terpenes. Used in making turpentine, terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. It was also reported that those who chewed the resin could get somewhat of a “buzz” (Pojar and MacKinnon p.47.

One of the chemicals that has been isolated from birch bark is called betulin. Betulinic acid, which is made from betulin, is being studied as a possible cancer treatment. Betulin has also been found in many other plants.

White Birch is used on the skin to treat warts, eczema, and other skin conditions. Promoters say that birch tea can be taken internally as a diuretic or a mild sedative and that it can be used as a treatment for rheumatism, gout, and kidney stones. The leaves are sometimes used on the scalp to help with hair loss and dandruff. Birch tar (oil distilled from birch bark) is used on the skin for skin irritations and parasites. Other claims for birch bark include the treatment of diarrhea, dysentery, and cholera.

WHITE BIRCH AND THE POWERFUL FUNGI CHAGA (THE TINDER CONK)

Chaga conk on a White Birch

Chaga conk on a White Birch

White Birch Moxa

Before I started this study of the White Birch, I did not know that the First Peoples in Cascadia used Moxabustion.  Moxibustion is the application of heat resulting from the burning of a small bundle of tightly bound herbs, or moxa, to targeted acupoints on the human body. The burning plant material is traditionally mugwort.  It is sometimes used along with acupuncture.  It is used to open up or move energy in a part of the human energetic body. It is well-known that for thousands of years far-eastern cultures have used moxabustion as part of their healing regimes.  What I was not aware of was that the First Peoples of North America, Central America and South America also use Moxibustion.  As I studied the White Birch I came upon a quote that perked up my inquisitive nature.  The book is called A Modern Herbal published in 1931 by Mrs. M. Grieve.  Grieve reports that birch leaf and bark was used as a moxa, and that it was burned on top of a fungi.  Both the birch parts and fungi were used to create a moxa for healing. Here is a quote from Grieve’s published works.

“Moxa is prepared from it and regarded as an effective remedy in all painful diseases. A type of moxa is made from the yellow fungus that is excreted from the wood of the White Birch, which sometimes swell out from the fissures of the bark” – Grieve p. 104

After some research I found that there are several types of fungi that are yellow and live in the fissure of the White Birch.  It is a tree that attracts fungi as it ages. Here is short list of some of the edible and medicinal fungi that grow on birch.  Ganoderma applanatum, or artist’s conk, Oyster mushroom (Pleurotus ostreatus), Turkey tail (Trametes spp.) attacks fire-scarred, wounded and drought-, freeze- or sunburn-stressed birches. Hairy (T. hirsuta) and colored (T. versiclor) turkey tails, Lenzites betulina, commonly called birch mazegill, Yellow Brain fungus and Chaga (Inonouts obliquus). According to Paul Stamets, most of these fungi have several medicinal properties, including antioxidant, antimicrobial, antitumor, and immunosuppressive activities. (Stamets 2005)

There are so many fungi attracted to the White birch that I would only be able to identify which was used as a moxa by contacting an expert.  But, there are clues.  It is yellow; it is used for burning as a moxa.   Was the fungi Chaga (Inonouts obliquus) also called Birch Tinder fungus Grieve’s moxa?  Chaga has a somewhat yellow underbelly.

I found several books that stated that the First peoples burned plants for many reasons; healing, food, spiritual connection, and fire carrying. It is well know that the First Peoples of all cultures across the globe including those of Cascadia burned plants as a method of reconnecting spiritually to the natural world.  They smoked and burned plants for healing and for ceremony. And they used the burning of plants as a method of healing via moxabustion.  One method of releasing essential oils in a plant or bark was to burn the plant, or place it on burning material and let the spark ignite the essential oils of the plant.  This method was often used to help healing substances connect with hard to reach areas of the body, such as cartilage and deep tissues.  My investigation found that in the practice of shamanism, moxabustion was essential to the healing process.

Let’s look at Chaga and its relationship with the birch.

Many mushrooms prefer a particular wood for their growth because they need the nutrients and conditions that they can get from that wood. Some form symbiotic relationships with certain trees, as the chanterelle does with birch, but many also feed on dead, decaying wood. There are also mushrooms that parasitize birch trees and which will kill weakened trees, such as the birch polypore (Piptoporus betulinus), a shelf fungus with an interesting history.

Chaga, a fungus in the Hymenochaetaceae family is in a symbiotic parasitic relationship with birch and other trees. The sterile conk that is Chaga is irregularly formed and has the appearance of burnt charcoal. Chaga was called the Birch tinder fungus because it was used as a means of carrying fire from one hearth to another.  The fungus was lighted and it carried the ignition spark.  Chaga was also used as a moxa hearth.  Plant material was placed on top of a burning ignited Chaga.  Together the Chaga and the burning plant created a moxabustion of healing aromatic substances. According to Paul Stamets the First Peoples used these fungi as a natural antibiotic, anti-inflammatory, and immunopotentiator as well as a practical fire-starter mushroom. (Stamets – Mycelium Running p. 258)

Finally I found a research paper published in the Journal of Ethnobiology in the summer of 1992 titled “Short communication – Use of Cinder Conk (Inonotus obliquus) by the Gitksan of Northwest British Columbia, Canada.

The author Leslie M. Johnson Gottesfeld writes:  “Cinder conk had two principal uses: for moxibustion treatment of swollen athritic joints, and as tinder or a slow match for making and transporting fire.”

Further she writes the Gitksan elder had two words for cinder conk: mii’hlw and tiiuxw. A Gitksan elder describes cinder conk and its medicinal use as follows:

“Mii’hlw-the black growth from the crack in the birch tree. Like yellow cotton inside. If you cut it off, use the yellow cotton stuff. Take a sliver like a match stick and burn it for pain in the joint.” According to the elder, after the sliver of cinder conk was burned near the skin on the affected joint, a special salve was then applied to the burn wounds. This treatment was reported to be effective in reducing the swelling, and presumably the discomfort, of the joint. ( Johnson Gottesfeld p. 154-55)

I love this much endangered fungi and birch that it grows upon.  And so do others who value it for its healing abilities.   Paul Stamets reports that wild harvesters for the nutraceutical industry are decimating the White and Yellow Birch populations of North America and Europe as they walk through the forest with machetes chopping the fungus off the tree and causing life-threatening damage to the trees.  The removal of the mother-chaga is also removing the spores from the forest (Stamets, October 2012).  The Chaga communities are becoming rarer as are the birch forests.

Stamets is trying to remedy the situation by teaching the nutraceutical industry and others to grow Chaga in growing houses on birch and other forest product chips.  He is also asking that the industry stop buying from foragers. Here is a link to a short video about conservation efforts to save the Chaga and the birch.

The trees are dying for a second reason:  Birch trees are especially sensitive to herbicides because they have a shallow root system. The herbicides are also decimating the beneficial fungi that live in symbiotic relationship to the birch.

UTILITY – CANOES AND BASKETRY

The White Birch is also called the Canoe Birch. In the Cascadian Bioregion (Pacific Northwest), some canoes were built as large as one

Canoe building - inland waters of Pacific NW

Canoe building – inland waters of Pacific NW

hundred feet long and seven feet wide, and could hold up to sixty people. Bark canoes are constructed of sapling frames covered in bark. Birch bark is very popular for both its durability and its relatively light weight. The birch bark is an outer covering spread over a frame (ribs and gunwales) made of flexible wood such as red or white Cedar. The canoe of the First Peoples was extraordinarily light and graceful. When new and dry, a 15-footer might weigh less than 40 pounds; the longer ones, made by some tribes, weighed about 75 pounds. One man could pick up a canoe and carry it, upside down and resting on his shoulders, over a long rough portage. For its size and weight, it had greater carrying capacity than almost anything that floats. A birch bark canoe could carry almost a ton of load and it is said that a 15-foot canoe was often used to transport an Indian Family with several children, plus all of their duffel and dogs. (Nature Bulletin)The Birch bark has been used to make baskets for thousands of years. There are myths about these baskets that have been retold to the basket-making societies. The birch basketry was used to make many helpful containers.  Panels of bark were also be fitted or sewn together to make cartons and boxes (a birchbark box is called a wiigwaasi-makak). The bark was also used to create a durable waterproof layer in the construction of sod-roofed houses.

Video – Cool things in nature:  Paper Birch Tree

REFERENCES

  • Birch Bark Canoes – Nature Bulletin No. 463-A   September 23, 1972
  • Forest Preserve District of Cook County viewed on the internet 1/20/2013 – http://www.newton.dep.anl.gov/natbltn/400-499/nb463.htm
  • Doctrine of Signatures – plant signatures – http://en.wikipedia.org/wiki/Doctrine_of_signatures viewed on the internet 1/22/2013
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Grieve, Mrs. M. (1931) Modern Herbal – The medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, fungi, shrubs and trees with all their modern scientific uses, 2 volumes, Harcourt, Brace company; reprinted by Dover Publications, NY in 1971.
  •  Johnson Gottesfeld , Leslie M. (1992) Short communication – Use of Cinder Conk (Inonotus obliquus) by the Gitksan of Northwest British Columbia, Canada. Journal of Ethnobiology, 12(1):153-156 Summer 1992
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London, pp.38
  • Pojar and MacKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia and Alaska, Lone Pine Publishing, Vancouver, BC
  • Stamets, Paul (2005) Mycelium Running- How Mushrooms can help save the world, Ten Speed Press, Berkeley, CA pgs 203-205.
  • Stamets, Paul “Chaga, the Clinker Fungus: This Mushroom Looks Scary But Can Benefit Health – October 25, 2012 – Huffington Post – http://www.huffingtonpost.com/paul-stamets/chaga-mushroom_b_1974571.html
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
Advertisements

Read Full Post »

“Perhaps you have noticed that even in the slightest breeze you can hear the voice of the cottonwood tree; this we understand is its prayer to the Great Spirit, for not only men, but all things and all beings pray to Him continually in different ways.”- Nicholas Black Elk (Hehaka Sapa) , from The Sacred Pipe (1953)

Cottonwood treeEvery spring the Black Cottonwood disperses it white fluffy seeds upon the world. As a child growing up in Oregon I loved to walk in the cottonwood snow drifts.  I looked up into the sky and watched the fluffy seeds twirl and dance above me.  Wind driven the seeds cannot survive in the shade of their parent and so they seek their fortunes floating and spilling over into every biome of Cascadia.  I am always surprised when the humans around me complain of the mess or the possibility of allergies.

I hear the other humans calling the Black Cottonwood a nuisance or a tall weed.  I want to tell them that this tree is in fact a bearer of great healing.  Research shows that the Cottonwood tree seeds are not the bringer of sneezes and sniffles, but the healer of such maladies.  The tree just happens to disperse its seeds at the same time that other plants release their pollen.   The Balm of Gilead hides in the buds of the great cottonwood and the bark and twigs heal all manner of pains and inflammations. The resins of this tree feed the bees and butterflies and the resin is collected by bees to protect the hive.

cottonwood fluff in forest

Cottonwood seed dispersal

Black Cottonwood make millions of seeds, usually in the last week of May and the seeds are dispersed on the winds- casting themselves as far from the mother tree as possible. The fluffy seeds can travel 20 miles on a breeze, they can be carried on streams and rivers and rest in a vernal pool.   Within 24 hours of hitting its mark, the seed will sprout.  So strong is the need to propagate, even a fallen branch will sprout where it comes to rest.

The species is native to western North America, and is a coastal species ranging from Alaska to California and as far inland as the Rockies.  It is often found on flood plains and is known to extract water up through it roots to control flooding in many areas.  Cottonwood will plant itself and take root where few other trees will grow.  They take root in pure sand or gravel along riverbanks.

BARK

The bark of the mature Black Cottonwood is deeply furrowed, dark grey with young shoots often angled in cross-section.

LEAVES

Cottonwood leaves and seed fluffThe leaves are alternate, deciduous, thick and oval with heart-shaped base and sharp-pointed tip. FLOWERS Male and Female flowers in catkins, on separate plants; male flowers with 40-60 stamens, female flowers with 3 stigmas.  The tree flowers before leaves open up.

FRUITS

The fruits are round, green, hair capsules that split when ripe into 3 parts.  The seeds are covered with white, fluffy hairs that help propel them through the air.

NAME

Chehalis – ne.’k’w! Cowlitz – xu’pxp

Green River – q’wde’’q’ats

Quinault – kalle’tsalx Squaxin – stsa’pats

(Populus balsamifer ssp. Trichocarpa)

“Populus” means the peoples’ tree.  This scientific name comes from the fact that cottonwood has proved to be so useful over the centuries.  Many parts of the cottonwood tree are medicinal. A compound called salicin, which is found in the leaves, buds and bark of cottonwood, has been proven to lower fevers and reduce inflammation and pain.  The resin has been used to waterproof boxes and baskets, and the bark has been used to make buckets for storing and carrying food.

THE ROOTING HORMONE ELIXAR

Black Cottonwood contains a large amount of rooting hormone, just like willows, so it is be useful for plant propagation.  Both Cottonwood Trees and Willow Trees produce their own rooting hormone, called auxin. Also like willows, leaf buds contain salicin which is a powerful anti-inflamatory and pain-reducer.

Making a rooting compound with Black cottonwood in 5 easy steps!

  1.  Take cuttings from a Black Cottonwood tree. Use a sharp pair of pruners or scissors and cut twigs that are less than a half inch in diameter.
  2.  Strip away all the leaves and throw the leaves away. Cut twigs into short pieces (1″-2″ long) and place into a pail.
  3.  Boil as much water as will cover your cuttings. Pour the boiling water onto the cuttings and leave overnight.
  4.  Remove twigs. Save in an airtight container in the fridge until you are going to use.
  5. To use – Get the cuttings of the plants you want to root. Remove any leaves that would be in the rooting area (you don’t want leaves to soak in the rooting hormone). Place your plant cuttings into the rooting hormone (only the bottom portion of the stems) and let soak for a couple hours, then plant in a pot with soil and care for as usual. An easy way to use the cottonwood as a rooting helper is to put cuttings of the plants you want to root in a bucket or vase with newly cut cottonwood cuttings.  This will also cause the other plant to root.

BEES AND THEIR PROTECTOR GLUE

In the spring, bees chew the resin from the cottonwood and digest it with their own enzymes to make bee medicine and glue called bee collecting resin1Propolis.  Bees collect the resin which is an anti-infectant, for their hives and seal intruders (such as mice and other invaders) in the resin to prevent decay and protect the hive (Pojar and Mackinnon p. 46).   The bees use the resin as a type of bee glue. The glue is thought to be very antibacterial and inhibits microbes that constantly threaten the environment of the hive. Some bees also collect the resin of the cottonwood to use as both an adult and larval food source.

FOOD FOR BUTTERFLIES

Many kinds of animals use the twigs of Populus balsamifera for food. The leaves of the tree serve as food for caterpillars of various Lepidoptera. (Butterflies, moths and skippers).

BALM OF GILEAD – DEEP MEDICINE

“There is a Balm in Gilead, To make the wounded whole,”-traditional African American Spiritual

Black Cottonwood bud with resin

Black Cottonwood bud with resin

The biblical Balm of Gilead is nearly indistinguishable from bee propolis; Balm of Gilead is made of resin from various poplars, including P. balsamifera, P. nigra, and P. gileadensis.”-Broadhurst and Duke 1998

The Balm of Gilead is mentioned in the Christian bible and the Torah.  It was a substance collected from several varieties of Middle Eastern and East African trees and was said to have many curative powers. The ‘balm of gilead’ of the Bible is a resin-exuding tree related to myrrh (Commiphora myrrha), frankincense (Boswellia spp.) and possibly Commiphora meccanensis. The resin was extracted and revered as a great healing salve.  It was burned at ceremony as it was thought to heal the soul and protect it from dark sources.

Most propolis research focuses on resins from forests where bees collect mainly from the poplar (Populus) genus and, to a lesser extent, beech, chestnut, birch, and conifer trees. Chemical analyses indicate that the bees’ propolis is almost chemically identical to these tree resins and is similar to medicinal gums such as boswellia and myrrh.

The balsam is not water soluble, so it is necessary to extract it either with fat, by macerating it in oil or cocoa butter in a warm place (do not boil, otherwise the buds might get burnt), or to prepare an alcoholic extract (tincture). It should be noted however, that some people develop an allergic reaction, which is more common with the tincture than with the ointment. This is probably due to the salicylic acid that is extracted in alcohol, but not in fat. So, if you are allergic to aspirin, you will probably react to Balm of Gilead tincture as well.

This resin when turned into propolis by bees contains a medicine that eases sore muscles, arthritic joints and helps to heal damaged skin. It contains substances that are known to inhibit the growth of cancerous cells (caffeic acid phenethyl ester-CAPE) (Broadhurst and Duke – 1998) When to Harvest:  Buds appear on cottonwood trees from late winter to early spring. You can smell the fragrance in the air on the first warm days.  Just before they open, the leaf buds will exude a drop of red to yellow colored resin. When you pinch the buds and see resin inside, it is the perfect time to gather them.  You will notice that some of the buds have catkins inside.  These do not have as much resin and are less preferred for medicine than the leaf buds. Herbalist Gregory Tilford suggests collecting the buds from lower branches and soaking them in alcohol to release the resin.

MAKING COTTONWOOD BUD OIL-YOUR OWN BALM OF GILEAD

You will need: extra virgin olive oil (enough to cover the buds), a double boiler, a blender (only if you are making a large amount), a Infusing olive oil with Balm of Gilead buds.pressing cloth like muslin, a strainer and a glass jar for long-term storage.  If you do not have a double boiler you can create your own by placing a small pot in a larger pot with an inch or two of water in the bottom pot.

  •   Step 1 – Do not wash the buds -blend or pinch open the buds.  This will help the resin to more easily release into the oil.  If you have a small amount you can simply pinch the buds with your fingernail.  Place directly in a double boiler and cover completely with olive oil.  For larger amounts, using a blender will save you a considerable amount of time.  First, place your buds in a double boiler and cover them with olive oil so they are fully covered ½ to 1 inch above the buds.  (If you put the buds in the blender directly without oil they will stick to the sides and your clean up will be much more challenging.)  Pour oil and buds into the blender.  Turn on and blend just until the buds are mostly broken open.  Place back in the double boiler.
  •   Step 2 – Gently heat.  Heat on a very low setting.  Do not allow the olive oil to get hot enough that it boils!  I place my oiled buds near my heater and keep it warm without a stove top.   Heat for several days.  The oil will turn a deep golden color and become very fragrant.
  •  Step 3 – Press out the oil.  Lay a piece of muslin cloth over a strainer that is sitting on a container.  Pour a couple of cups of buds and oil into the muslin, bundle it up, twist the cloth and squeeze with all your might.  Once oil stops dripping, empty the buds into a compost container and continue pressing until done.  Let the pressed oil rest for an hour or so.  If there is any water or solid material it will fall to the bottom of your container.
  •  Step 4 – Store.  Pour your oil (minus any water or solids that might be at the bottom) into a glass storage container.  You can use any glass jar with a tight fitting lid.

Making the Balm or Salve

The infused oil can be added to beeswax to make a balm or salve.   To each cup of oil, add 1 ½ to 2 Tbsp. beeswax. Over very low heat, or in the top of a double boiler, stir and melt the beeswax. Pour into clean tins or jars. Allow to cool and solidify before covering with lids.

If your balm is too hard for your liking, melt with a little more oil. If it is too liquid, melt with a little more beeswax. Cottonwood oil and balm is especially helpful for swollen arthritic joints and sore muscles.  It has a very fragrant aroma.   It also makes an excellent massage oil for sore muscles.  Because cottonwood is high in antioxidants, it is useful for healing the skin, including sunburn.  The buds are also antiseptic and can be added to other herbal oils to prevent rancidity and molding.

THE USE OF COTTONWOOD BY THE FIRST PEOPLES OF CASCADIA

Many First Peoples believed that Cottonwood was a sacred wood used as an instrument of communication between The Great Spirit who loves us all and humanity.  Many instruments of ceremony were made of cottonwood. According to Pojar and McKinnon the Nuxalk/Kwakwaka’wakw and other Cascadian First People used the sweet inner bark and cambium tissues as food and medicine.  The bark was boiled and the infusion was used for a gargle to treat sore throats (Gunther 1945).  These barks were harvested in late spring.  Many other tribal people collected the buds in the early spring and boiled in deer fat to make a fragrant salve. The gum from the buds was used to treat baldness, sore throats, whooping cough and tuberculosis. The resin from buds were used in a poultice with crushed cottonwood leaves to treat pains and rheumatism.

The gum that exudes from the burls was placed directly on wounds and cuts. A soap and a hair wash were made from the ashes of burned cottonwood.

The wood from the tree was used to smoke fish (mostly inland tribes). The inner bark was used to reinforce other fibers in spinning.  The gum from the spring buds was used to waterproof baskets and boxes. Paint and dyes were made from the yellow and red resins of early spring buds. The Squaxin used the young shoots of cottonwood for making the sweat lodge, and also used them for lashings and tying thongs. (Gunther 1945). The wood and buds were burned down to charcoal and used as ceremonial incense.

Several Cascadian tribes believed the Black Cottonwood had a spirit force that was very powerful and it was reported that the tree moved even when the wind was not blowing.  They would not burn the wood but would often listen to the trees for direction.  Like Black Elk, they listened for the voice of the Cottonwood tree.

Video

From Northstar Bushcraft a re-wilding project located on the Columbia River at Golden British Columbia. They have a very nice and useful website located at http://www.northstarbushcraft.com/

  •  Broadhurst, C. Leigh, Ph.D and Duke, James A. Ph.D, (1998)  Propolis: An Age-Old Medicine, Mother Earth Living, Natural Home, Healthy Life March/April – Viewed on the web 12-01-2012 at http://www.motherearthliving.com/health-and-wellness/inside-plants-8.aspx
  •  Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  •  Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  •  Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  •  Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  •  Tilford, Gregory L., Edible and Medicinal Plants of the West, ISBN 0-87842-359-1

Read Full Post »

Red Alder (Alnus rubra)

During the storm I dreamt of Red Alder.  I dreamt that the spirit of the tree was leading me away from danger.  Then I woke and saw ruts of the big machines and I cried for the forest.  Soon after the Red Alder came up through the sun-baked soil of the clear-cut. – Ellen O’Shea – Radical Botany

Red Alder Grove along stream

Some plants are trailblazers.  They show up when great change has happened.  They grow in the ruts of human civilization, the mud, the flood tracks and the places where sun and wind prohibit other plants to grow. Red Alder just such a trailblazer. A true pioneer plant.  It shows up to heal, grows fast, stays a short time, then allows the tall conifers, the redcedar and majestic Bigleaf maple and other trees to take over.  It is a friend and healer of the forest. It is a tree that perseveres in the direst of circumstances. Even after massive clear-cutting and wild fire destruction where the forest seems changed forever, the Red Alder will push up out of the graves of other trees and change the soils.  It is an alchemist.  It will attract the bacterium needed to change the acid of riddled sun-parched soils into  the conditions needed to bring back an entire eco-system.  After the Red Alder emerges, the tiny herbs, the ferns and sedges follow.  Soon after that the wildflowers, elderberry shrubs, Indian plum and wild honeysuckle will follow. And then the conifers and larger deciduous trees follow and a whole forest eco-system emerges.

The Red Alder soothes the hardest of earth and entices the fungi, bacteria and nutrients back into the forest floor. The bacterium on its roots fix the nitrogen needed to feed the forest community. A grove of Red Alder will only live about 100 years, just enough time to coax the forest community to come home one more time.  As a healer of humans its bark is used to sooth the acid stomach and gallbladder, clean the lymph glands and bowels, entice the poisons from the skin and open up the lungs.  A poultice of the bark will bring forth the inner poison.

Red Alder wood chips are often used to cultivate eatable and medicinal mushrooms such as the Shiitake.

THE NAME

Clallam  – s’ko’noiltc

Quinault – malp

Swinomish – su-k’uba’ts

Alder is the common name of a genus of flowering plants (Alnus) belonging to the birch family Betulaceae. The English name was derived from the bright rusty red color that develops in bruised or scraped bark. The outside bark is mottled, ashy-gray and smooth, often draped with moss. But just inside is the glorious red used for dye and medicine.

HABITAT

Red alder (Alnus rubra) are the largest species of alder on the west coast of North America.  The tree can grow to 40 feet or more, needs full sun, is a nitrogen fixer, tolerates poor, wet soil and is found in valleys in the Cascadian bio-region as well as the foothills of the Cascade Mountains. Red alder is a fast- growing but short-lived (old at fifty, with a maximum age of about a hundred years).

For years, as the rain forests of the Pacific Northwest were devastated by massive clear cutting of the region, Red Alder was thought to be invasive and was destroyed.   For the first 100 years of European settler decimation, the Red Alder was thought to be scrub, a noxious weed and unnecessary for forest health.  Then in the 1970’s and 80’s as second and third growth Douglas fir tree farms failed to thrive, research showed that an essential part of the forest eco-system was missing.  Red Alder, an amazing nitrogen fixer had been systematically removed from the forests using massive amounts of chemicals and extraction methods of forest management.

With the lack of nitrogen in the forest soils, other native species began to be stunted and attract disease. But as foresters began to study forest re-growth, they noticed that Red Alder was one of the first trees to return to a clear-cut.  They also noticed that as the Red Alder stands thrived, so did the small plants, shrubs, and then other tree species thrive. The Red Alder is a forest healer; it brings life back to much damaged soils.  For soils that have been heavily sprayed with toxic chemicals, the introduction of Red Alder is less successful.

RED ALDER AND NITROGEN FIXING BACTERIUM

An important nitrogen-fixing bacterium in our Cascadian bioregion is Frankia ahni.  Red Alder (Alnus rubra) and other types of alders are the host for this important bacterium. Alder is particularly noted for its important symbiotic relationship with Frankia ahni, an actinomycete, filamentous, nitrogen-fixing bacterium. This bacterium is found in root nodules, which may be as large as a human fist, with many small lobes and light brown in appearance.

I found a great online source for explaining the nitrogen fixing process. “A Nitrogen Fixation: The Story of the Frankia Symbiosis by Peter Del Tredici a Harvard researcher can be found at this link: http://arnoldia.arboretum.harvard.edu/pdf/articles/1995-55-4-a-nitrogen-fixation-the-story-of-the-frankia-symbiosis.pdf

Here is a quote from that document:

“Before atmospheric nitrogen can be used by plants, it must be “fixed,” that is, split and combined with other chemical elements. This process requires a large input of energy and can occur either biologically, within the cells of various bacteria, or chemically, in fertilizer factories or during lightning storms.

Among all living organisms, only bacteria have evolved the complex biochemical mechanisms required for nitrogen fixation. All “higher” plants and animals that are said to fix nitrogen are really only the symbiotic partners of the bacteria that do the actual work.”

Red alder is often found growing near coast Douglas-fir (Pseudotsuga menziesii subsp. Menziesii), western hemlock (Tsuga heterophylla), grand fir (Abies grandis), western redcedar (Thuja plicata), and Sitka spruce (Picea sitchensis) forests. When found along streambanks it is commonly associated with willows (Salix spp.), red osier dogwood (Cornus stolonifera), Oregon ash (Fraxinus latifolia) and bigleaf maple (Acer macrophyllum).

Red Alder leaf

THE LEAVES

Alternate, deciduous (fall off the limb in the autumn), broadly elliptic, and sharp-pointed at the base and tip. The leaf top is dull green and smooth, and the underside is golden-colored and hairy. The leaf margin is revolute, the very edge being curled under, a diagnostic character which distinguishes it from all other alders. The leaf turns yellow in autumn before it falls from the tree.

 

The male and female catkin

THE FLOWER

The flowers are catkins with elongate male catkins on the same plant as shorter female catkins, often before leaves appear; they are mainly wind-pollinated, but also visited by bees to a small extent. These trees differ from the birches (Betula, the other genus in the family) in that the female catkins are woody and do not disintegrate at maturity, opening to release the seeds in a similar manner to many conifer cones. The catkins form in the fall, and then overwinter, ready to open or flower in spring. The female catkin is cone-like, droops slightly, usually in clusters of threes.

The male catkin is slender, cylindrical, hanging in clusters of 3 to 5 from short leafless branches.

THE FRUIT

Red Alder cones or fruit

The fruit is clusters of brownish cones which are quite small (up to 2 cm long). They remain on the trees over the winter and contain oval winged nutlets. About 2000 seeds are normally produced by the cones which are normally spread by the wind but also by the water and birds. The seeds have a viability of about 45%. Seeds are normally dispersed between the months of October and March.

THE BARK

The bark is thin, grey, and smooth often with white patches of lichens.  The bark will turn bright red to rusty red when cut.

As a weaver I often sought the bark of the Red alder as a source of dye.  I peeled back the bark and exposed it to air and it would turn a brilliant red.  As the bark dried the color of the bark changed from red to a slightly golden brown.  I fixed the color using apple cider vinegar.

MEDICINE

Red Alder is a bitter and an astringent (Meyer p.3).  Bark twigs and buds were used. An ointment of the bark was used to cure eruptive skin diseases (Stuhr  p. 21). Catkins are edible and high in protein, but are very bitter in taste and utilized usually on for survival food. The wood is used to smoke cooked food.

The Bark of the Red alder contains anti-inflammatory salicin that metabolizes into salicyclic acid in the body.

Cut of the Red Alder – new (red) and old (golden)

Salicin is related to Aspirin. Red Alder bark is used for relief from poison oak, insect bites, and skin irritations.  The Red Alder bark is used in infusions to treat lymphatic disorders and tuberculosis.

The bark was boiled and drunk for colds, stomach trouble, and scrofula sores. The rotten bark and woody parts were rubbed on the body to ease “aching”. (Gunther p. 27)

The wood was used to make canoes, boxes and paddles and multiple other utility implements.  Like the Western Red Cedar, this tree was widely used by the first people of the Cascadian bio-region. The wood was important because it could be used while still green, seasoned and not split in the sunlight.  The wood of the Red Alder has long been used to smoke salmon.  The bark was used to line baskets for storing wild berries, roots and other foods and herbs.

POLLINATOR AND BUTTERFLY HABITAT

Alder leaves and sometimes catkins are used as food by numerous butterflies and moths. The late winter and spring catkins are beneficial to more than one species of bee,  and depending on nearby habitat may attract other insect pollinators, such as butterflies, hoverflies, and pollinating beetles. If the Red Alder is close by water, the pollinators can be plentiful.

Red Alder is a better butterfly host plant than the Asian butterfly bush, which only provides some nectar, not structure to attach chrysalis, nor leaves for caterpillars after hatching.

If you would like to learn more about native plants and the pollinators they attract, order the wonderful book  put out by the Xerces Society called “Attracting Native Pollinators”.  The book is coauthored by four Xerces Society staff members Eric Mader, Matthew Shepherd, Mace Vaughan, and Scott Black in collaboration with Gretchen LeBuhn, a San Francisco State University botanist and director of the Great Sunflower Project.  More on the book go here – http://www.xerces.org/announcing-the-publication-of-attracting-native-pollinators/

VIDEO  AND ONLINE RESOURCES

Article about Red Alder healing capacity by Kiva Rose, herbalist- http://bearmedicineherbals.com/alder-tree-of-transformation-healing.html

How to identify a Red Alder – http://www.youtube.com/watch?v=tBdmL5A0_3c

Interactive Distribution Map of Alnus rubra – http://www.plantmaps.com/nrm/alnus-rubra-red-alder-native-range-map.php

REFERENCES

  • Del Tredici, Peter (1995) Nitrogen Fixation: The Story of the Frankia Symbiosis, Harvard University, Arnoldia Arboretum – viewed on the web on November 9, 2012 – http://arnoldia.arboretum.harvard.edu/pdf/articles/1995-55-4-a-nitrogen-fixation-the-story-of-the-frankia-symbiosis.pdf
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  • Tilford, Gregory L., Edible and Medicinal Plants of the West, ISBN 0-87842-359-1

Read Full Post »

Part one:  Conifers

A few minutes ago every tree was excited, bowing to the roaring storm, waving, swirling, tossing their branches in glorious enthusiasm like worship. But though to the outer ear these trees are now silent, their songs never cease. –  John Muir

As a young person I developed a deep love and bond with trees.  I spent hours climbing trees, swinging in the boughs of a large fir or sitting high in an oak tree.  I loved the ability to see long distances across the landscape.  I found many interesting things in trees.  Bird nests, ferns, nuts, acorns, mistletoe and insects all fed my imagination. I found incredible peace in the treetops.  I would have been very happy to have lived in a tree house.

So now I teach you what I know about trees.

I have spent months now teaching you basic botany.  I have focused on the parts of the plant.  I want to begin to teach you how to go into the forest and find plants. I will teach you about the trees first.  I will be focusing primarily on the trees found in the Cascadian bio-region-that area found from Northern California, through Oregon and Washington state and up through British Columbia.  The Cascade mountain range separates the Western regions from the Eastern Regions but mant of the areas share similar tree and plant communities.

There are of course some amazing micro-ecosystems found in Cascadia.  For instance the eco-system of Northern California and Southwestern Oregon are very different from the eco-system of Western British Columbia and Western Washington.  More on that later.

Trees have always been the marker that I use to find the plants I am seeking. Why?

Because I can look out across the horizon and see the tall trees, the old ones that will have the most to share as far as a finding plant communities.  For instance, when I am looking for wild orchids or lilies, I will look to the horizon to find a large Douglas fir old growth or a very tall Western Red cedar.

Trees are the anchor for plant communities.  They create habitat, keep plants fed and watered, provide shelter for pollinators and animals that carry the seeds throught the forest.  Large Douglas fir and Western Redcedar have an outreach affect that can cover miles of terrain.  The mycelium connected through the roots of big trees support thousands and thousands of varieties of plants. Communication between the species found under big trees has been studied and now documented.

University of British Columbia professor Suzanne Simard, has discovered through her research that “trees in a forest ecosystem are interconnected with the largest, oldest ‘mother trees’ serving as hubs”.  This research has found that all trees in dry interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests are interconnected, with the largest, oldest trees serving as hubs, much like the hub of a spoked wheel, where younger trees establish within the mycorrhizal network of the old trees.

The research also found that all the forest plants had a much better chance of survival if they were linked into the network of old trees.  It was found that increased survival was associated with below-ground transfer of carbon, nitrogen and water from the old trees. This research provides strong evidence that maintaining forest resilience is dependent on conserving mycorrhizal links, and that removal of hub trees could unravel the network and compromise regenerative capacity of the forests. (Simard 2013)

There are two different groups of trees – conifers and deciduous.  Conifers are the evergreens.  And, deciduous are the trees that drop their leaves in the fall and re-grow green leaves in the spring.

THE 12 MOST IMPORTANT CONIFERS IN THE WESTERN CASCADIAN BIO-REGION – and how to identify them.

The trees I will be teaching you about are all found west of the Cascades.  Later I will make some charts of important trees found east of the Cascades but still in the Cascadian bio-region. The charts below include information about what the tree needle, cone and general shape look like. This information should help you identify them.  I have included information about wildlife that use the tree for survival and I have included ethno-botanical information about the tree.  I have created some graphs that you can print out and make as large as you like. They are stored as graphics on this web page.   I hope that you will print them out, take them into the forest and try to identify the trees as you walk. I hope that you will fall in love with the trees as I have.

REFERENCES

  • Coastal Douglas-Fir Forests and Wildlife – Woodland Fish and Wildlife December 1992 viewed online July 20, 2012 – http://www.woodlandfishandwildlife.org/pubs/coastal-df.pdf
  • Gilkey, Helen M. & Dennis, L. J. (2001) Handbook of Northwestern Plants. Corvallis, OR: OSU Press
  •  Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washinton Press.
  • Moerman, Daniel E. (2004) Native American Ethnobotany. Portland: Timber Press.
  • Old Growth Forest Wiki- http://en.wikipedia.org/wiki/Old-growth_forest
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Simard, S.W., Martin, K., Vyse, A., and Larson, B. (2013) Meta-networks of fungi, fauna and flora as agents of complex adaptive systems Managing World Forests as Complex Adaptive Systems in the Face of Global Change. Edited by Puettmann, K, Messier, C, and Coates, KD, Earthscan, Taylor & Francis Group, London. In press.
  • Simard, Suzanne – Trees Communicate With One Another, Connected by Fungi (Video)  http://www.treehugger.com/natural-sciences/trees-communicate-one-another-connected-fungi-video.html

Read Full Post »

Around every flower is the sweet fragrance of scented air. This field of fragrance is the flower’s soul. The soul is not just inside the flower. The flower lives inside the soul.  As we do.”  Tom Cowan – Yearning for the Wind.

Flower dreams – by Ellen O’Shea

How is it that flowers can be such powerful healers?  What is in the plant and the flower that creates bio-chemical and vibrational substances that affect all of nature, all of us?

For years I used the Bach Flower remedies for emotional healing.  I often gave them to my children during emotional imbalance.  When they were teenagers they questioned whether these flower remedies did anything at all.  As a parent I did not research how it worked I just told them I knew it worked because I was brought back to balance after ingesting a flower essence.  My children were highly suspect of my “whooy whooy” beliefs.  They wanted evidence that the flower had such power to heal.  I wish now that I would have accommodated them.  I wish that I had done the science.  They were learning discernment and that is a good thing.  I dedicate this blog entry to my three beautiful daughters.  Without them I would not have been compelled to ask the deeper questions about plants, nature and the human connection to all things.  20 years ago there was not access to all the research and ideas that are available now.  Now I do the deep search.

So I venture.  What I am finding is amazing and essential for all of us to know if we are going to heal ourselves and the planet.

Observation: The smell of the flowers stimulates the parts of the brain that produces emotions. How does that happen?

For instance- Citrus helps alleviate depression. Smelling a wild rose causes me to feel more stable and clear-thinking.  How does this happen? My inquiry has led me to many wonderful teachers in the last few weeks.  Some long gone such as Bach and Meeuse.  Some plant teachers I contacted are very much alive and teaching thousands of people to reconnect with the healing ability of the flowers and the plants.

Let us begin…

 “Animals are something invented by plants to move seeds around. An extremely yang solution to a peculiar problem which they faced.” Terrance McKenna (an ethnopharmacologist)

According to Bastian Meeuse, 25 million years ago flowers appeared, they had just emerged from the oceans and had somehow trained primitive fleas and beetles to transport pollen from flower to flower.  The insects and other pollinators craved the nectar and other food produced by the plants.  And (this is very important) the plants and pollinators EVOLVED together.  We humans also EVOLVED with the plants. And these plants including the flower have become our food, our medicine and our evolutionary neurotransmitters.

As the plants evolved and survived many challenges, so did humans. For thousands of years human healing involved bringing awareness to our bodies, to its unique reactions and processes, and to its symptoms and strengths.  This awareness brought us to growthful insight and we pursued this healing in partnership with plants.  In describing this ability to heal, I am describing a human who is at the peak of performance in body, mind and spirit and wellbeing.  This ability to be healthy has always been influenced by plant-based food and medicine.

It has been only in the last 100 years that we humans in the Western world have moved in mass away from a plant based diet and plant based medicine.  During the great purge of Europe in the 1500’s and beyond, millions of healers were killed for what they knew about plant healing.  That mentality was brought to the Americas and is flourishing today in Western medicine.  It is with great effort that the First People’s have kept flower and plant healing alive in the U.S.  Our brothers and sisters to the south in the other America’s have developed great societies of plant healers.  The healing power of the flower is just now being explored by the West through a growing number of herbalists.  More and more people in the US and Europe are exploring plant based nutrition and healing.

Many cultures in the Far east and India still have long-held knowledge of how to heal with plants and how to heal with flowers.  I will explore a couple of those modalities.

How can a flower influence healing? Western Science has just now begun to ask the important questions about how plants heal humans and why the healing mechanism cannot be synthesized into chemical compounds. These questions have been asked and answered in the healing modalities of the East and far-east. Western science has been dissecting the process of how plants heal humans by constructing studies based on the scientific method.

FLAVONOIDS A WESTERN STUDY

One such study looked at flavonoids found primarily as the pigments responsible for the autumnal burst of hues and the many shades of yellow, orange, and red in flowers and food.  These flavonids are found in fruits, vegetables, nuts, seeds, herbs, spices, stems, flowers, as well as tea and wine.  Over 4000 structurally unique flavonoids have been identified in plants.  Eastern cultures have used these plants high in flavonoids for healing for thousands of years.  According to the study, a resurgence of interest in traditional Eastern medicine during the past two decades, together with an expanded effort in pharmacognosy, has rekindled interest in the flavonoids and the need to understand their interaction with mammalian cells and tissues. (Middleton, Kandaswami, and  Theoharides 2000).

In general these flavonoids must be ingested from plant tissue and then they interact with the bacteria in the gut to affect change in the body.  But some flowers also affect flavonoid changes through aroma and biochemistry. So, merely smelling a flower may cause chemical changes in the body.

Other studies have found that a diet rich in fruits and flowers also cause the brain to develop differently, increase its size, provide high levels of DHA and demonstrate powerful endocrine altering properties such as hormones. This diet may be responsible for the evolutionary changes in brain capacity over millions of years. A move away from this diet in the last 200 years is beginning to produce a human brain that is shrinking. Human evolution in the tropical forest may have strongly affected the development of the human brain (Gynn and Wright 2008).

St John’s Wort flowers

St John’s Wort is a plant whose flower is coveted for its healing abilities. The St John’s Wort (Hypericum perforatum; Clusiaceae) has been used in traditional and modern medicine for a long time due to its high content of biologically active phenolics.  Hypericum perforatum L. (St. John’s wort) is a representative of the Clusiaceae family with confirmed therapeutic effects on burns, bruises, swelling, anxiety, mild to moderate depression, antidepressant, antiviral, wound healing, analgesic, hepatoprotective, antioxidant and antimicrobial activity.

At first western scientists disputed the ability for this flower to heal.  However recent studies have found that the plant extract contains Naphtodianthrones.   Naphthodianthrones such as hypericin and pseudohypericin are predominant components in St. John’s wort extracts, and most St. John’s Wort phytomedicines are currently standardized according to their hypericin content. These chemicals are localized in dark glandular structures mainly located on the margins of St. John’s wort leaves and flower petals and appear to serve in the defense against insect herbivory.  Although there is some evidence that biosynthesis of St. John’s wort naphthodianthrones involves the polyketide pathway, the production of napthodianthrones in St. John’s wort can be influenced by environmental factors such as light and soil mineral nutrients (Briskin 2000).

FLOWER PHYSIOLOGY AND HEALING BIO-CHEMICAL PIGMENTS

The floral meristem cells  such as those found in flowers can be described as tiny cellulose boxes on the inside and a thin layer of protein plasma that surround the large central vacuoles. The structure holds a mass of water that holds in solution a whole array of chemical compounds such as sugars, plant acids, salts and often pigments. The pigments are very healing to the human body.  Here are three pigments found in flowers that promote health.

  • Anthocyanins – (flower + blue) are water-soluble vacuolar pigments that may appear red, purple, or blue depending on the pH.  Eaten in large

    Anthocyanins- Anthoxantins – Betacyanins flowers

    amounts by primitive humans, anthocyanins are antioxidant flavonoids that protect many body systems. They have some of the strongest physiological effects of any plant compounds, and they are also things of beauty: anthocyanins provide pigment for pansies, petunias, and plums.  Anthocyanins are the active component in several herbal folk medicines such as bilberry (Vaccinium myrtillus), which was used in the 12th century to induce menstruation and during World War II to improve British pilots’ night vision. Scientists are now discovering how such anthocyanins work and are beginning to appreciate their health benefits.

  • Anthoxantins – are water-soluble pigments which range in color from white or colorless to a creamy to yellow, often on petals of flowers. These pigments are generally whiter in an acid medium and yellowed in an alkaline medium. They are very susceptible to color changes with minerals and metal ions, similar to anthocyanins. As with all flavonoids, they exhibit antioxidant properties, and are important in nutrition. Anthoxanthins may contain allicin which is good for lowering cholesterol and blood pressure.
  • Betacyanins- Betalains are a class of red and yellow indole-derived pigments found in plants of the Caryophyllales, where they replace anthocyanin pigments. Betalains also occur in some higher order fungi.  They are most often noticeable in the petals of flowers, but may color the fruits, leaves, stems, and roots of plants that contain them. They include powerful antioxidant pigments such as those found in beets.

NUTRITIONAL BENEFITS OF FLOWERS

Flowers have many nutritional benefits for humans and pollinators.  They have nectar, nutritious tissues (yes you can eat many flowers), volatile oils, waxes, resins and perfumes.

Pollen is a highly nutritious well-balanced food and medicinal substance found in flowers.  Pollen contains a sizable amount of protein, starch, sugars, fat or oil, minerals, antioxidants, and vitamins such as thiamin. It is also rich in free amino acids.  Some flowers have food hairs that contain protein and fat.

Nectar- a solutions of readily digested sugars that also contains amino acids, vitamins and minerals.  Most nectar contains glucose, fructose and sucrose in a base of minerals and oil. Pollinators are highly attracted to nectar and for most this is their main food source.  Also there are whole groups of yeasts that thrive in nectar. Some yeasts produce a enzyme, invertase or sucrase, which splits sucrose.  Honey-bees also possess this enzyme and consequently honey contains no sucrose. Now this yeast is very healing to the human gut and is also is the primary substance in the making of Mead.

MEAD-
From the bonny bells of heather,
They brewed a drink long-syne,
Was sweeter far than honey,
Was stronger far than wine.
They brewed it and they drank it,
 And lay in blessed swound For days and days together In their dwellings underground.

– R.L. Stevenson Heather Ale

Mead is a alcoholic drink long loved by humanity.  The drink is made from honey that has been allowed to ferment.  The addition of natural pollens in the drink has long been known to acclimate humans to their local environment.  Hence fewer allergies.

Nectar is collected by honey bees and is digested. The bees add enzymes, and transfer the nectar to a honey stomach from which it is regurgitated into cells in the comb when they return to the colony. Additional enzymes are added, the cells are hermetically sealed, and the honey is then permitted to “ripen,” meaning that the enzymatic activity occurs which gives the honey its final sugar blend.

INHIBINE

Since ancient times, the antibiotic effects of honey have been recognized by the medical community. – In 1937 Dold[11] and others measured and documented the effect, and called it “inbibine”. 25 years later, Dr. Jonathan White and others isolated the exact cause of the anti-bacterial effect: the glucose oxidase in the honey produces hydrogen peroxide as it acts on glucose to produce gluconolactone (gluconic acid). This enzyme is heat sensitive, and concentration varies with floral type.  Mead and honey also add to healthy human gut flora if brewed correctly. Some flowers offer fatty oils (glycerides) instead of sugary nectars to visiting bees. One such flower is the Vanilla Orchid.

vanilla Planifolia

VANILLA PLANIFOLIA – A FLOWER OF THE GODS

Vanilla planifolia is a species of vanilla orchid. It is native to Mexico, and is one of the primary sources for vanilla flavoring, due to its high vanillin content. The oil found in the Vanilla flower is a powerful healer to humans.  It is an antioxidant, aphrodisiac (This oil stimulates secretion of certain hormones like testosterone, estrogen etc.), febrifuge: The vanilla oil can effectively reduce fever by fighting infections due to presence of components like Eugenol and Vanillin Hydroxybenzaldehyde in it.  Being a sedative, it also reduces inflammation due to fever (Anti Phlogistic would be the right word for it) and this also contributes to reducing fever. It is a known antidepressant, tranquilizer and equalizer for your emotions.

AROMATHERAPY

Aromatherapy uses the olfactory  and skin of the human body to transmit the aroma of a flower.  Each essential oil when administered takes into consideration ones physiological state and physical state, healing both simultaneously.  The path of healing is mostly thought to be biochemical.

THE ESSENCE OF FLOWERS

Now this is all good knowledge of flower healing but what about flower essences?  How do they work?

This one is harder to answer, but because of the work of many healers, the science of quantum physics humanity is getting closer to answering that question.  But we must start with the master of flower essences in the west – Edward Bach

EDWARD BACH AND THE BACH FLOWER REMEDIES

Edward Bach

Edward Bach lived from September 24, 1886 – November 27, 1936.  He was a British physician, homeopath and spiritual writer, best known for developing a range of remedies called the Bach flower remedies, a form of alternative medicine inspired by classical homeopathic traditions.

From Wikipedia:

“Rather than being based on medical research, using the scientific method, Bach’s flower remedies were intuitively derived  and based on his perceived psychic connections to the plants.  If he felt a negative emotion, he would hold his hand over different plants, and if one alleviated the emotion, he would ascribe the power to heal that emotional problem to that plant. He believed that early morning sunlight passing through dew-drops on flower petals transferred the healing power of the flower onto the water, so he would collect the dew drops from the plants and preserve the dew with an equal amount of brandy to produce a mother tincture which would be further diluted before use.   Later, he found that the amount of dew he could collect was not sufficient, so he would suspend flowers in spring water and allow the sun’s rays to pass through them. He observed that certain flower essences affected emotional healing- that is he could reverse strongly negative emotions by prescribing a certain flower essence.  Bach thought of illness as the result of a conflict between the purposes of the soul and the personality’s actions and outlooks. This internal war, according to Bach, leads to negative moods and energy blocking, which causes a lack of “harmony,” thus leading to physical diseases. (Larimore 2004, Robson 2007). ”

FLOWER CRYSTALINE PATTERNS – THEY KEY TO ESSENCES

Just exactly how do the flower essences work?

Edward Bach wondered if the health properties of various herbal remedies might be due more to their radiant energy than to their chemical properties. This led Edward Bach to look closer at the energetic properties of plants and flowers and ultimately led the development of the flower essences and his flower remedies which are homeopathic in nature.  The base of homeopathy is that the essence of the flower, or root, or bark, is transferred to the water or alcohol it is dissolved in. That is to say, the radiant frequency is transferred.

We already know that water can be made to radiate and this property is not lost even at the million to one dilutions of the homeopathic pharmacy. Specifically, the effect of the plant infusion must mimic the symptoms of the patient.

RADIANT WAVE LENGTHS

Of great interest to me is the findings of Andre Simonton, that foods radiate at certain wave lengths depending upon a number of factors, one being the freshness of the food, another being the vitality of the food. Understanding that every particle down to a photon of light has a specific wave length and that these minute wave lengths can be measured by modern methods lets us qualify foods in real time. Fresh milk measures at 6,500 angstroms but loses 40% of its radiation at the end of 12 hours and 90% at the end of 24. Pasteurization killed the radiation completely. The same is true of fruit juices and garlic juice, when pasteurized, coagulates like blood and has no radiation.  Frozen foods retain their radiation when thawed, foods in the refrigerator tend to acquire more radiation as they mature and dehydrated foods are re-vitalized when rehydrated.  Water has the same property. Some water, as that at Lourdes, radiate at 156.000 angstroms and, taken away in a bottle, eight years later still measures 78.000 angstroms. Some vegetables have higher radiation when raw but some, like potatoes, are higher when cooked.

Next I contacted Herbalists that I know and asked them to explain the flower essence healing capacity to me.  Are flower essences active healers because they possess volatile oils of the flower that affect neural pathways in the brain that in turn affect emotional centers found in the brain?

No, I found flower essences act very differently.

According to several different herbalists they act on a energetic level, on the quantum physical level affecting chemical structures found in our bodies.  According to Steven Horne a Herbalist with www.treelite.com. ( I am currently studying with Steven and find his months-long online class on “Botany for Herbalist” to be incredibly helpful to my botanical journey).

Steven says: “Flower essences are homeopathic-like. It is believed that homeopathic remedies work because water forms crystalline patterns (has a crystalline structure) which can hold the “frequency” of a substance.  The body reacts to the frequency of the remedy, which alters the body’s own water structure patterns. It is a physical thing, but not a chemical thing.”

Plant chlorophyll vs human blood hemoglobin life force fluids

The human body is composed of many crystalline substances—the bones, blood, brain and DNA are crystalline in structure; even on a molecular level, our cells contain the same molecular silica as is found in natural quartz crystal. In effect, the human body and the plant body have much the same molecular structure because we evolved, and survived together.  The healing of our bodies is dependent on connecting on the most molecular, energetic level in order to thrive and continue to evolve. The plants are a tuning fork for our own crystalline structures.  A flower essence is the song the tuning fork plays.

AYURVEDIC MEDICINE AND PLANT EXTRACTS

Next, I contacted Nicole Telkes lead instructor at the Wildflower School of Botanical Medicine. Nicole reports that the Ayurvedic philosophy of healing can also explain how the flower essences work. She reports that the Indian medical system of Ayurveda is based on the belief that plants have many medicinal properties. Many medicines are made by combining the extracts of plants to cure many ailments.

Nicole writes: “How the flower essences work…as a vitalist, that is a hard concept to show on paper. It is experiential. How they work depends on your philosophy of healing. Essences are an entirely different ball game than herbal medicine–except in concepts in of vitalism. Strictly speaking, you could say that the plant’s aromatics, mucilage and other constituents create response in the body but many of us believe it is much more than that, especially with essences which use no measurable amount of plant material.

Nicole goes on to explain, “Western Herbalism does have energetics, it just became lost and masked in terminology as herbalism was somewhat absorbed into allopathy. It’s the entire medical system in the U.S. that lost the energetic classification system and humoral system. You can look thru Greek medicine and folks healing throughout the U.S. and the energetic system is still there–you just have to look harder.”

Nicole offered this description of Yurvedic healing: “Yurvedic Concepts: everything in the world is ultimately composed of five Bhutas (elements) – prithvi (earth), apa (water), teja (fire), vayu (air) and akash (ether). Ayurveda strictly adheres to this concept called the Panchbhuta theory. The five parts of plants in Ayurveda show how plant structure is related to five elements. The root corresponds to earth, as the densest and the lowest part, connected to the earth. The stem and branches correspond to water, as they convey the water or sap of the plant. The flowers correspond to fire, which manifest life and color. The leaves correspond to air, since through them the plant breathes and the wind moves the plant. The fruit correspond to ether, the subtle essence of the plant. The seed contain all five elements, containing the entire potential plant within itself.”

In his book “Radical Healing”, Rudolph Ballentine, MD. describes his experiments with the flower essences. He is a graduate of Harvard, a psychiatrist and he studied medicine in India. He has prescribed flower essences and other herbal remedies to his allopathic MD friends and gives detailed accounts of the results plus a great many other detailed accounts on herbs in his book. Dr Ballentine reports that flower essences work on the principle of vibrational medicine and they convey complex informational patterns directly from nature that can be used by the human system to reprogram the body and the mind.

We can’t really ignore the fact that living matter is filled with information. It’s an incredible storage medium for information. In fact, I’m told that researchers in the area of computers, the forward-looking people in Silicon Valley, are really looking toward abandoning silicon as a storage medium for computer microprocessors, and are thinking of moving toward living protoplasm – bacterial cultures and so forth, because they can hold such an incredibly larger amount of information.

You see, all living matter is an infinite library of information about life and how to live on this planet. And we’ve barely entertained the possibility of how to harness this information. Natural medicinals have been doing it for a long time but it wasn’t referred to in these terms. Now we’re beginning to realize how sophisticated these ancient techniques are. They’re not just superstition. They’re really quite elegant and quite advanced. I leave you with a beautiful video about Edward Bach created by the Bach remedies Foundation:

The Bach Flower Remedies- The Journey to Simple Healing Part 1

The Bach Flower Remedies- The Journey to Simple Healing Part 2

REFERENCES

  • Ballentine, Rudolph (1999)  Radical Healing: Integrating the World’s Great Therapeutic Traditions to Create a New Transformative Medicine, Three Rivers Press, New York, NY
  • Bach, Edward (1931) Heal Thyself, The Explanation of the real cause and cure of disease. CW Daniels, London – Republished electronically in 2003 by the Bach Flower Research Program at http://bachtherapy.org/Books/Heal%20Thyself%201931.pdf
  • Briskin, Donald (2000) Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Health, Plant Physiology October 2000 vol. 124 no. 2 507-514
  • Dold, From Crane, E., Honey, A comprehensive Survey, Heinemann, London, 1979.
  • Ernst, E. December 30, 2002. “Flower remedies”: a systematic review of the clinical evidence”. Wiener Klinische Wochenschrift 114 (23-24): 963-966. Flower essence repertory – P Kaminski  – http://www.flowersociety.org/repertory/repertory.pdf
  •  Gynn, Graham and Wright, Tony (2008) foreward by Dr. Dennis McKenna – Left in the Dark-Tropical forest biochemistry, the driving force in human evolution. Ingrams and Baker & Taylor publisher, London, UK
  • Horne, Steven interview on via email on 6/13/2012  Steven H. Horne, RH(AHG) www.stevenhorne.com www.treelite.com  www.modernherbalmedicine.com
  •  Larimore, Walt; O’Mathuna, Donal (2007). Alternative Medicine: The Christian Handbook, Updated and Expanded (Christian Handbook). Grand Rapids, Michigan: Zondervan. pp. 293. ISBN 0-310-26999-7.
  • Meeuse, Bastiaan and Morris, Sean ( 1984) The Sex Life of Flowers – Facts on File Publication, Rainbird Publishing Group, London, England
  • Middleton,Elliott Jr. Kandaswam, Chithan and Theoharides, Theoharis C.(2000) The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer, Pharmacological Reviews December 1, 2000 vol. 52 no. 4 673-751 http://pharmrev.aspetjournals.org/content/52/4/673.long viewed on the internet 6-10-2012
  • Pintov S., Hochman M., Livne A., Heyman E., Lahat E. 2005. “Bach flower remedies used for attention deficit hyperactivity disorder in children – a prospective double blind controlled study”. European Journal of Paediatric Neurology 9 (6): 395-398.
  • Robson, Terry (2004). An Introduction to Complementary Medicine. Allen & Unwin Academic. pp. 184–185. ISBN 1-74114-054-4.
  • Telkes, Nicole – Wildflower School of Botanical Medicine – http://www.wildflowerherbschool.com/
  • Walach H., Rilling C., Engelke U. July 2001. “Efficacy of Bach-flower remedies in test anxiety: a double-blind, placebo-controlled, randomized trial with partial crossover”. Journal of Anxiety Disorders 15 (4): 359-366. White, J.W.Jr.,et al., Composition of American Honeys, USDA Technical Bulletin #1261, 1962.
  • White, J.W.Jr., Honey, Adv Food Res., 24:287-374, 1978.

Read Full Post »

“Beauty and seduction, I believe, is nature’s tool for survival, because we will protect what we fall in love with.”– Louie Schwartzberg, from The Hidden Beauty of Pollination

After I posted the first part of the “The flower in three parts” my current essay series, I received an email from someone who said “The Flower in three parts, sounds like a symphony”.  Yes, I said, that is the energy I have been trying to convey to others that botany, plants, native plants, flowers are all part of a symphony of life. Each part of the flower and its growth processes are important to the whole. The first part or movement was to turn your attention to this fantastic creation sitting at the end of a stem. I hoped to raise your curiosity.  I tried to flood your senses with wonder at the design and substance of flowers. It was a slow movement encumbered by way too much vocabulary but necessary if you are to truly meet the flower in all its wonder.

I have been drawing you into the allegro or opening sonata in order to capture your attention for the second movement the main allegro or scherzo: The pollination cycle or sex life of flowers. And finally in The Flower – part 3: “The Flower as Healer”, I will end with one of the strongest connections between humans and flowers: they heal us – the finale – we are flowers ourselves.  We are they and they are us. What we do to the flower, we do to ourselves. If we kill off the pollinators and clear-cut the plant kingdom, so goes all Eden, of which we are a part.

But now for Part 2: Pollination and The Sex Life of Flowers

The name of the second part “The sex life of Flowers” came from my research on flowers and their ways and means of pollination. While researching I

Sauromatum-guttatum-Voodoo Lilly

discovered a scientist named Bastiaan Jacob Dirk Meeuse.  He was a naturalist and botanist who was a professor at the University of Washington. He lived from 1916 to 1999.  Meeuse was a prolific researcher whose five decades of research on the exotic but stinky voodoo lily resulted in numerous contributions to science.  Dr. Meeuse was an authority on pollination, especially by insects and birds, and wrote the textbook ”The Story of Pollination” (1961).

In the 1980’s his research contributed to a well-known public television documentary called “Sexual Encounters of the Floral Kind” (1983). I have links to segments of the documentary in end of this essay. In 1984 Meeuse co-authored a book along with Sean Morris called “The Sex Life of Flowers”.

Meeuse was a botanist attracted by the exotic, he unlocked the secrets of the voodoo lily (Sauromatum guttatum) a relative of the corpse flower (Amorphophallus titanum). The voodoo lily has a very strong smell and generates much heat, up to 108 degrees when it ready for pollination. When it flowers, perhaps once a year, its fleshy purple spike emits waves of heat and an odor not unlike that of rotting meat. The chemicals released by the heat apparently helped to attract pollinators. (see picture).

Meeuse, along with his research team documented the flower cycle and the important relationship between pollinators and flowers. Meeuse and Morris found innumerable examples of mimicry in which the flower part has evolved to resemble a female bee. The male, trying unsuccessfully to mate with the flower, unwittingly collects and spreads the orchid’s pollen.

Here are a few facts about mimcry in pollination: When the male wasp tries to mate with the dummy female, he fails, but the orchid succeeds in getting pollen on the wasp. He flies away, only to be fooled again by another orchid pulling the same trick. In the process, the wasp transfers pollen from flower to flower. Plants that are farther away from each other are more likely to be distant relatives, so mimicry may reduce inbreeding. Posing as a sexual suitor may be a strategy that allows the geographic spread of plants over a wide area — generally, insects will travel further to find a mate than to find a meal.

Here is a link to the BBC documentary using some of Meeuse’s research:Wild Orchid and wasp mimicry – http://www.youtube.com/watch?v=-h8I3cqpgnA

Another important aspect of Meeuse’s research was to show that flowers develop MANY paths to pollination.  Flowers can be asexual (agamogenesis), hermaphrodites, only male or only female. And then there are the combinations. The only way to learn about a plant and its lovely flower is to sit with it, study it. Learn its entire life path. You just can’t make any broad statements about how flower reproduction takes place.

THE FERTILIZATION PATHWAY OF THE ZUCCINI SQUASH

Female and Male flowers of Zucchini Squash

Let’s look at the squash plant: A Zucchini squash plant has both male and female flowers.  Male flowers usually appear first and have a thin stem. Female flowers appear later and have a small, baby zucchini developing between the base of the flower and the vine. The male flower will usually open in the early morning, attract a certain type of early morning foraging insect, then can die away by the late afternoon.  The female flower will open later in the day and again attracts the same pollinating bee or insect and is fertilized by the pollen it is carrying.  If the small squash rots away then it has not been fertilized.  This can show a lack of garden pollinators. Hand pollination may be the only way to have a good crop of squash.

There is a very fragile dance going on here.  If there are no pollinator bees or other insects, our food will disappear. On most flowering plants there is only one short time frame in which a flower can be pollinated and if the conditions are just right or there are not enough pollinators available, no fertilization can happen. As in many processes in nature, timing is important. The female reproductive part of a flower is receptive to pollen only at certain times of the year. Creatures like insects and birds, which move from flower to flower in search of food, are a fast and often guaranteed way for plants to distribute their pollen.

Not all flowers need to be so cunning. Several angiosperm species including grasses bear inconspicuous blossoms – that use the wind for pollination.

Sometimes drought and disease can cause squash plants to only produce male flowers. Now this lack of fertilization can also be caused by severe weather change, or lack of fertilization in the soil types or pollution that causes mutations of plant or pollinator. Yes, the fragile dance is important to support.

PLANT CELLS AND THE MERISTEM-FLORAL

Floral-Meristem Physiology

For the last few months I have been leading you on a journey from the root to the stem to the branch and now on to the flower. All the while following the adventures of the meristem cell.  At the point of developing the flower, the meristem cell morphs into a meristem-floral cell and begins to produces cells that will become the structure of the flower.Plants produce 2 types of reproductive cells.  The first is the spore – found on such plants as ferns. The second is formed during sexual reproduction – a process where a population is divided into male and female members or distinct male and female structures on individual plants. The DNA of the plant, stored in these specialized flower cells will begin to build the structures and organelles that will become the flower. Flowers give rise to fruit and seeds.

BASIC SEXUAL PARTS OF A FLOWER

Flowers are short branches bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved (Capon 2010).  Both the male and the female reproductive parts of a plant are in the center of the flower. The male, pollen-producing part is called the anther, held aloft by a stalk called a filament. The entire male apparatus is called a stamen. Each pollen grain is unique to its species. The female reproductive part of a plant, the stigma, sits on top of a style, or stalk, which leads to an ovary at the base. The entire female plant mechanism is called a pistil. This is the illustration of a perfect flower having both female and male parts (some do).

Flowers have figured out a way to do the amazing things they do while taking care of the place that will take care of their offspring.  They are focused on having their genetic material here 10,000 years from now. Plants seduce pollinators with fragrance, hue, platform structure and a promise of sex with another of its own kind and ensure return visits with the promise of nectar.

Some flowers attract with scent, some with color. Most offer nectar as an enticement to visitors and as a way to ensure repeat visits. The chemical ecology of plants seeks not only to attract pollinators, but keep predators away. The complexity of floral odors mediate interactions between flowers and pollinators to guarantee reproductive success (Carde and Ring 2004).

Return business is particularly important for plants that encase many seeds in a single fruit—raspberries, for instance, or melons. A poorly pollinated raspberry will have many shrunken, dry drupelets. A melon blossom that doesn’t attract enough pollinators may produce a melon that is small, lopsided, and not very sweet.

A few varieties of plants have adapted the shape of their flowers to favor certain pollinators—tubular blossoms attract hummingbirds, for instance, but the nectar is often inaccessible to bees.

Lady Slipper Orchid

Other plants aren’t choosy. They’ll do business with birds and bees, and also with wasps, beetles, rodents, and even humans if that’s what it takes to move the pollen.Many flowers have a distinctive bull’s-eye color pattern or a throat of a different shade from the outside petals, to help insects and birds find the payload of pollen.

Plant structures, too, are designed to attract specific pollinating partners. The Queen Anne’s lace flower places its nectar right at the base of its tiny flowers where pollinators with a short proboscis (nectar-gathering appendage) such as honeybees, ants, wasps, flies, and beetles can reach it when they crawl on the flower. On the other hand, bumblebees, butterflies, and moths have long proboscises, which enable them to reach nectar in less accessible places. For example, the long shape and curve of the columbine flower complements the long tongue of a bee, butterfly, or hummingbird. By concealing the nectar deep within its trumpet-like blossoms, the columbine prevents animals who are not its pollination partners from taking the nectar and transferring any pollen.

WHY ARE HUMANS ATTRACTED TO FLOWERS?

Are humans also pollinators?  Michael Pollan, author of “Botany of Desire” writes in his 2002 article called “Border Whores” that some evolutionary psychologists have proposed an interesting answer. Their hypothesis goes like this: our brains developed under the pressure of natural selection to make us good foragers, which is how humans have spent 99 per cent of their time on Earth. The presence of flowers is a reliable predictor of future food. People who were drawn to flowers, and who, further, could distinguish among them, would be much more successful foragers than people who were blind to their significance. In time the moment of recognition—much like the quickening one feels whenever an object of desire is spotted in the landscape—would become pleasurable, and the signifying thing a thing of beauty.

Humans have danced with the flowers, written poetry, songs and spent endless hours nurturing their flower gardens.  The flower is etched into our psyche- we are changed by the floral scents, the structure and the nectar.  Humans have used flowers for food and medicine for thousands if not millions of years.  It has only been recently that we have become “plant and flower blind. It has only been in the last 100 years that we have begun to call certain flowers “weeds” and have conducted a chemical warfare on our beloved inspirers.

We humans have lost the ability to love the plants and their flowers. We cannot see the connection between life on earth and the need to pave over paradise. We need to grow and protect fertility.  In ensemble that is what ecosystems do, it creates more and more opportunity for life. We need to create conditions conducive to life the same way flowers and plants do. Ban all the dangerous chemicals and stop making war on the natural world.  We need to make peace with the flowers and the plants and all species. Namaste.

CASCADIAN NATIVE PLANTS THAT YOU SHOULD KNOW ABOUT

Oceanspray-Pacific Ninebark-Spirea

Matthew Shepherd of the Xerces Society reports that there are approximately 900 species of bees and approximately 200 species of butterflies in the Cascadian bioregion.  Native plants are the forage of choice by these pollinators. Some native plants attract a great many pollinators.  Cascading plants such as Pacific Ninebark (Physocarpus capitatus), White Spirea (Spiraeabetulifolia), and Ocean Spray (Holodiscus discolor) could be attracting hundreds of types of pollinators.  They often grow near wetlands, stream banks and moist forest lands.  They should be included in all landscaping projects where ever possible. These essential native plants will bring wildlife into any garden or natural area and guarantee the pollination for many flowers.

Another extremely important indigenous plant is the Willow. The Willow species are the basis of a vital food web for insects, birds, small mammals, larger animals; many soil organisms, bacteria and fungi. They are a very important habitat.  In particular Apis mellifera, (the honey bee) an insect belonging to the Hymenoptera Order use the early blooming Willow flowers (catkins) to survive long wet, cold springs. These insects are not damaging to the willow leaves or flowers, but are feeding on nectar and are helping to pollinate other early blooming plants (Aliner 1992).

The flowers of the Willow are inflorescences, taking the form of catkins, which develop in a familiar way, through the loss of the bud scale and the revelation of the silky hairs of the ‘Pussy Willow’. Eventually, however, the anthers surmount the filaments of the stamens and reveal a vivid display of pollen from pale yellow through gold to shades of red and purple depending on the species.

BEE COLONY COLLAPSE – A CANARY IN THE MIND SHAFT?

And finally I leave you with this little video called “The Beauty of Pollination”.  The speaker is director and producer Louie Schwartzberg.  He is presenting his work as part of the TED TALKS.  His deep concern for the present bee colony collapse that is decimating pollinators worldwide caused him to take all his film making skills and present a dire message to the world.  “The destruction of the bee is like a canary in the coal mine- once the bees are gone, then the flowers will disappear. Once the flowers are gone – then we will be gone.” You cannot truly love the flowers if you do not love the pollinators. Feast your eyes on this TED TALK on

The Hidden Beauty of Pollination:

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx: The whorl of sepals on the outside of a flower is referred to as the calyx.
  • Corolla: The whorl of petals is called the corolla.
  • Filament: The filament provides support for the anther in the stamen.
  • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
  • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
  • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
  • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Ailner, J. Edward (1992) The Tree Book Collins and Brown Ltd

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Carde, Ring T. and Millar, Jocelyn G:  Editors (2004) Advances in Insect Chemical Ecology – Cambridge University Press

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Meeuse, Bastiaan and Morris, Sean ( 1984) The Sex Life of Flowers Faber & Faber, London.

Meesue, B J D (1961) The Story of Pollination, Ronald Press, New York, NY

Meeuse, Bastiaan contributior – Documentary “Sexual Encounters of the Floral Kind”  part one: http://www.youtube.com/watch?v=1Qi7Pnth_t8

Pollan, Michael (2002) Border Whores, The Times London, March 9, 2002 Viewed on the internet May 18, 2012 http://michaelpollan.com/articles-archive/border-whores/

Shepherd, Matthew (2012) Xerces Society, Portland, Oregon http://www.xerces.org/ from a private email on 5-18-2012

Shepherd, Matthew, et al. Pacific Northwest Plants for Native Bees, Xerces Society, The invertebrate Conservation, viewed on the web on 5-12-2012 http://www.xerces.org/wp-content/uploads/2010/01/pacificnw-plants-for-bees-xerces3.pdf

Weiss, M. 1991. Floral colour changes as cues for pollinators. Nature 354:227-229.

WEB RESOURCES

Websites:

  • The sexual encounter of the floral kind. A 12 part series produced by public television and based on the research of Bastiaan Meeuse. Part 1 -Video on how flowers attract pollinators.  The male wasp and the flower.

http://www.youtube.com/watch?v=Hv4n85-SqxQ&feature=relmfu

  • North American Pollinator Protection Campaign – The best website available for resources on pollination, projects for classrooms, organizations affiliated with the Pollination Protection Campaign and more. Detailed lesson plans for in the classroom with teacher guides and student guides available for printing directly off website. Availability to order posters and materials for the classroom. http://www.nappc.org/
  • Xerces Society –The invertebrate Conservation organization located in Portland, Oregon. A very valuable organization and website. Lots of resources and education material.  – http://www.xerces.org/

Next time: The Flower:  Part 3 – The Flower as healer

Read Full Post »

“The ‘Amen!’ of Nature is always a flower.”
– Oliver Wendell Holmes

I have been reading so much about flowers lately and I want to teach you what I learned as well as what I know.  So, I am going to teach about the flower in three parts.  Part 1: The history, physiology and pattern of the flowers (to help you identify flowering plants).  Part 2: Pollination and the sex life of flowers, and Part 3: The flower as a healing agent.

THE FLOWER – PART ONE

How did this happen. The flower is so different than any other tissue on the plant. The flower is a creation so beautiful and so attracting and it grows at the tip of the green or brown stem or branch of a plant. The flower is as intricately designed as if created to reflect the fractal formulas of the universe. The flower is designed to include color, shape, aroma, and chemical attractants to bring forth the pollinators so that it can complete its cycle of life: reproduction of itself.  How beautiful and how perfect it seems to us humans too. But, how is it created?  The answer is again found in the DNA of the plant and the meristem cells that drive the action in creating the plant. In this essay we are introduced to the Floral Meristem.

FLORAL MERISTEM

Last time we learned about the leaf.  We learned that the leaf was formed by the action of chemical changes and apical meristem cells.   The plant is reaching for the sun just as there is enough warmth, light, chemistry, moisture and food and creating new structures that will help it thrive.

The meristematic cells give rise to various organs of the plant, and keep the plant growing. The Shoot Apical Meristem (SAM) gives rise to organs like the leaves and flowers. When plants begin the developmental process known as flowering, the shoot apical meristem is transformed into an inflorescence meristem, which goes on to produce the floral meristem, which produces the familiar sepals, petals, stamens, and carpels of the flower. Floral meristem cells are responsible for determinate growth.  That is, they know exactly what they are supposed to create and that is the flower. And, this flower will live long enought to reproduce the plant and then die. The floral meristem cells direct the limited growth of the flower to a particular size and form. The transition from shoot meristem to floral meristem requires floral meristem identity genes that both specify the floral organs and cause the termination of the production of stem cells at just the right time. The floral meristem identity genes are “turned on” at the time the leaf meristem is turned on.  In fact some parts of flowers (bracts) are actually modified leafs. If you would like to learn more detail about this process please check out the wiki on Meristems located at http://en.wikipedia.org/wiki/Meristem

Queen Anne's Lace

THE HISTORY, PHYSIOLOGY AND PATTERN OF FLOWERS

The ancestors of flowering plants diverged from gymnosperms around 245–202 million years ago, and the first flowering plants known to exist are from 140 million years ago. They diversified enormously during the Lower Cretaceous and became widespread around 100 million years ago, but replaced conifers as the dominant trees only around 60–100 million years ago. (Wikipedia)

Non-flowering plants includes conifers, ginkgoes, ferns, cycads, horsetails, and mosses

A Flower is the reproductive structure of a tree or other plant, consisting of at least one pistil or stamen, and often including petals and sepals. According to botanist Brian Capon the flower is a short branch bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved.

A land plant that flowers is called an angiosperm.  The Angiosperms are seed-producing plants like the gymnosperms and can be distinguished from the gymnosperms by a certain characteristics including  flowers, endosperm within the seeds, and the production of fruits that contain the seeds.

Flowers aid angiosperms by enabling a wider range of adaptability and broadening the ecological niches open to them. This has allowed flowering plants to largely dominate terrestrial ecosystems.

There are an estimated 352,282 unique flowering plant names, it is also estimated that there are approximately 69,500 known species of monocots and 49,500 known species of non-monocot species. The number of presently unknown plant species is thought to be 10 to 20 per cent or 20,000 to 30,000 species (Joppa, Roberts, and Pimm 2010).   The number of flowering monocot plants increased steadily for the last 250 years up until about 1850 when the number began to plateau.  There has been a steady decline in the last 50 years of known species and there are still species that have not been discovered.  The decline is due to habitat encroachment and environmental degradation.

MONOCOT VS DICOT – A REFRESHER

Monocot vs Dicot

Traditionally, the flowering plants have been divided into two major groups, or classes: the Dicots (Magnoliopsida) and the Monocots (Liliopsida).  The Dicotyledon is typically described as group of flowering plants whose seed typically has two embryonic leaves or cotyledons. The monocotyledon is typically described as having one embryonic leaf.

The Dicotyledon class has the following characteristics: – two seeds, – netted veins in the leaves, usually tap-rooted, usually complex branching, – flower parts mostly patterned in 4’s and 5’s. Example of the dicotyledon flowers would be: buttercup, rose, gentian and aster.

Monocotyledon class has the following characteristics: – one seed leaf, – parallel veins in the leaves, – horizontal rootstalks, – usually simple branching – flower parts mostly in 3’s. Examples of the flowers would be: arrowhead, lily and orchid.

FLOWER PHYSIOLOGY

Flower physiology

The parts of the flower are important to learn as the specific arrangement of flower parts will help you to identify a specific plant. There is a more complete list of flower parts with definitions at the end of this essay, but for now we will be focusing on petals, sepals, pistil, stamens, ovary, stigma, and style.

FLOWER PATTERNS OF SPECIFIC PLANT FAMILES

Mustard family – They have four free saccate sepals and four clawed free petals, staggered. The mustard family flower pattern includes 4 petals, 4 sepals, 4 tall stamens, 2 short stamens (Examples: Wild Mustard, Wall flower, Water Cress, Stock, Candytuft, and Lunaria)

The mints, taxonomically known as Lamiaceae or Labiatae – 5 united petals, (2 lobes up, 3 down), 5 untied sepals, 4 stamens (2 long, 2 short). Flower matures into a seed capsule containing four nutlets. (Examples: Horehound, Self Heal, Stinging Nettles, basil, mint, rosemary, sage, savory, marjoram, oregano, thyme, lavender, and perilla)

The Apiaceae (or Umbelliferae), commonly known as carrot or parsley family – 5 petals, 5 stamens, 2-cell ovary, compound umbels (Examples: angelica, anisewater hemlock, Water parsnip, Queen Anne’s lace, cow parsnip, parsnip, dill and fennel).

The Fabaceae or Leguminosae, commonly known as the legume, pea, or bean family – irregular flowers- 5 petals forming banner, wings and keel.  The keel consists of two petals fused together. Internal fused and free stamen. Fabaceae range in habit from giant trees (like Koompassia excelsa) to small annual herbs, with the majority being herbaceous perennials. (Examples: wisteria, pea, bean, acacia, mimosa, vetch,

Lilly or Lilium family is a genus of herbaceous flowering plants growing from bulbs, all with large, prominent flowers. – Flowers with parts in three. Sepals and petals usually identical. 3 sepals, and 3 petals (same size and color), 6 stamens, Pistil with a 3-parted stigma. (Examples: Tiger lilly, Shasta Lilly, Leopard Lilly,

Malvaceae, or the mallow family, is a family of flowering plants containing over 200 genera with close to 2,300 species.  5 petals, 5 sepals, bracts (modified leaves located at bottom of the flower), numerous stamens fused together as a column, pistil. The ovary is superior, with axial placentation. Capitate or lobed stigma. The flowers have nectaries made of many tightly packed glandular hairs, usually positioned on the sepals. The flowers are commonly borne in definite or indefinite axillary inflorescences, which are often reduced to a single flower, but may also be cauliflorous, oppositifolious or terminal. (Examples: hollyhock, okra, globe mallow, Hibiscus)

Sunflower or Aster family is an exceedingly large and widespread family of vascular plants.[3] The group has more than 22,750 currently accepted species, spread across 1620 genera and 12 subfamilies. Composites of many small flowers in disk-like flowerhead. Stigmas, 5 stamens fused around pistil, 5 petals fused together, pappus hair sepals, ovary. Even the petals are individual flowers. Each seed is produced by a single tiny flower. Multiple layers of bracts are common. (Examples: Dandelion, sunflower, asters, dahlia, Chrysanthemum, Gerbera, Calendula, Dendranthema, Argyranthemum, Dahlia, Tagetes, Zinnia).

Rose family Rosaceae (the rose family) are a medium-sized family of flowering plants, including about 2830 species in 95 genera. Roses can be herbs, shrubs or trees. Most species are deciduous, but some are evergreen.[2] They have a worldwide range, but are most diverse in the northern hemisphere. Arrangement of flowers is radially symmetrical and almost always hermaphroditic. Rosaceae generally have five sepals, five petals and many spirally arranged stamens. The bases of the sepals, petals, and stamens are fused together to form a characteristic cup-like structure called hypanthium. They can be arranged in racemes, spikes, or heads, solitary flowers are rare. (Examples of rose family includes many fruit varieties life apple, cherry, plum chokecherry as well as wild and domesticated roses)

There are several other families of flowers that I will explore in the future but for a full breakdown of all the flowering plant families check out Thomas Elpel’s book “Botany in a Day, The Pattern Method of Plant Identification”. He covers all the plant families including those I did not identify today such as : Heath family, Pyrola family, Indian Pipe family, Primrose family, Hydrangea family, Gooseberry family, Stonecrop family, Saxifrage family, Gentian, Dogbane, Milkweed, Nightshade, Morning Glory, Pholx, Waterleaf, Borage, Verbena, Plantain, Olive, Figwort, Broomrape, Bladderwort, Harebell, Madder, Honeysuckle, Teasel, Arrowhead, Arrow Grass, Water nymph, Pondweed, Spiderwort, Rush, Sedge, Grass, Cattail, Duckweed, Arum, Lily, Iris, and Orchid.

INFLORESCENCES – BRANCHING PATTERNS OF STEM OF THE FLOWER

An inflorescence is a group or cluster of flowers arranged on a stem that is composed of a main branch or a complicated arrangement of branches. Strictly, it is the part of the shoot of seed plants where flowers are formed and which is accordingly modified. The types of arrangements include: the spike, the raceme, the panicle, the umbel, the composite, the corium, capitulum and the thyrse. (Please see graphic of these patterns).

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx:The whorl of sepals on the outside of a flower is referred to as the calyx.
    • Corolla: The whorl of petals is called the corolla.
    • Filament: The filament provides support for the anther in the stamen.
    • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
    • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
    • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
    • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Lucas N. Joppa, David L. Roberts, and Stuart L. Pimm,(2010) How many species of flowering plants are there? Proceedings of the Royal Society of Biological Sciences, Proc. R. Soc. B doi:10.1098/rspb.2010.1004 Published online: http://rspb.royalsocietypublishing.org/content/early/2010/07/07/rspb.2010.1004.full.pdf+html  viewed online April 26, 2012

Wikipedia – Flowering plants – http://en.wikipedia.org/wiki/Flowering_plant Viewed on the internet on 4-28-2012

NEXT TIME:  Pollination and the Sex Life of Flowers

Read Full Post »

Older Posts »

%d bloggers like this: