Feeds:
Posts
Comments

Archive for the ‘postaweek2011’ Category

When I was a child growing up on the edge of a white (Quercus garryanna) oak forest in Oregon I loved to collect the wild seeds of native plants. I was attracted to their great beauty, unusual design, and uniqueness. I was fascinated by their shapes, sizes, colors and even smells. They were my special treasures.  I kept a collection of wild seeds in a tin box under my bed away from the prying eyes of my many siblings.  I would often take the box out and pour over my many wild seed “treasures”.

I spent hours collecting, observing, and drawing pictures of the seeds. I had special names for the seeds: “whirligigs” (the samara or winged seed pod of the Acer or Maple tree family),” wishes” (the multi-seed pod of the dandelion),” hooksters” (the hooked seed of the Cleavers), and “boings” (the seed pod of the wild pea or Vetch).

I asked my father, who was a very amazing gardener, why my seeds looked so much different than the seeds we planted in our garden.  He told me that the seeds planted in the garden had been changed by man over many years.  They were hybrids of once wild plants.  He told me that the seed I collected was wild seed. Seed that only nature had touched.

I scanned the Book of Knowledge book set that was in our family’s library looking for information about wild plants and seeds.  I had many questions.  I wanted to know why some seed had tails and seemed to fly through the air; some oozed fluids and were sheathed in pockets of paper-like plant material. Still others were very hard to touch because they were sheathed in very hard outer shells.  I found seed that dropped to the ground and burrowed itself into the earth. Other seed attached itself to animals or my pant leg and later dropped far away from the mother plant. Some seeds used streams and rivers to move through the forest and still others catapulted themselves through the air.

The shapes of the seeds fascinated me. They were not only small, oval or round like the garden seeds, they took many shapes and sizes.  Some seeds were encased in berries; others were encased in cones or grew in long clusters. Some were round, some were square and a large number were geometrically shaped like small geodesic domes.  Every seed was unique and held a mystery within it. Every seed had adapted so it could survive a more or less competitive environment. I learned that plants disperse their seeds because they do not want new plants nearby competing for water, light and nutrients.  The fruits or pods that contain the seeds have adapted to different dispersal methods.  For instance, the acorn of the White Oak has a fruit that looks like a seed, but the outside of the acorn has a tough wall to protect the seed within. When the acorn falls to the ground it rolls away from the parent plant.  The acorn is very attractive to animals.  The squirrel will carry the acorn away and bury it. How convenient that the squirrel “plants” the acorn in the ground.

Some seeds develop coats of paper thin material – capsules and pods. As the pod membrane dries it creates tension and finally the pod will pop open- throwing the seed in all directions (Sweet Vetch and other pea family plants). The paper-like pod is also easily dispersed in the wind.  Some seeds have hooks – much like Velcro that allows the seeds to attach themselves to animals and people to be carried away.

In fact the inventor of Velcro Swiss engineer, Georges de Mestra was said to have studied the mechanism of a common burr to come up with the idea for his amazing invention.

One year I took half my collection and planted the seeds in a small bed of loose soil.  Very little of it germinated. Only some wild grasses came up. None of the wildflowers grew. I was so disappointed.

As always my dad patiently answered my many questions. He told me that wild things are special and unique and cannot easily be captured. He said most die in captivity and cautioned me not to catch the wild frogs or salamanders or try and hatch the pheasant eggs I found in the orchard. My father told me that wild plants also needed special care and in order to germinate the seeds I would have to learn everything I could about the plant first.  He said some seeds have special needs like a long cold spell, or fire or being eaten by a bird.  My father told me that unless we protect the wild plants we may lose our food plants, our forests, our water and our air. He said that all our food and flower plants were hybrids of wild plants. He said that hybrids become harder to grow over time and have to be grown again from wild stock at some time. If the wild stock disappears, so will our easy to grow food sources.  My father had great respect for wild plants. He taught me how to forage for berries and other food.  And he told me the names of the native and wild plants.  It was my father who told me that in the past First Peoples everywhere used wild native plants for everything in their lives.

Because of the general lack of training in biological/botanical training in the schools at that time I decided to learn everything I could on my own through books.  I spent hours in the library reading about plants and learning their mysteries.

I spent a good portion of my life trying to learn about native plants and how to propagate them through direct observation.  Some native plants must be grown from seed and have very peculiar growing habits. In nature only a small fraction of the seeds of plants succeed in germinating and growing to maturity because of the many hazards encountered. Each plant has a peculiar way of making sure it’s seeds will be distributed to safe environments. My own observations from gardening and also working with native plants have taught me that wild seeds flourish in their wild habitat and contribute to a plant community that is exquisite and dynamic. One has only to visit an old growth forest and experience the diversity of life, the mycelium and the healthy web of life to know that wild plants know something we do not yet understand. This is why so many fragile native plants do not do well in people’s yards. To successfully propagate native plants one must understand and create a replica of the environment that the plant came from.

As we move native plants back into our yards, cities and towns we will need to make sure there is enough diversity of plants and we need to keep protecting the wild areas where the plants flourish.

In his essay on the need for diversity in plant and seed life, D.A Albert proposes that creating small areas of plant repositories (plant zoo) can create fragmentation leading to the destruction of whole plant species.

“Habitat destruction and fragmentation by development interrupts normal plant dispersal and gene exchange. In extreme cases, isolation creates highly inbred populations which can have a number of deleterious effects. Highly inbred populations may not have the genetic variability “on the warehouse shelves” to adapt to change. Inbreeding poses additional problems for self-incompatible species. These species can become so inbred that cross pollination between “different” individuals is no longer possible, rendering the population unable to produce viable seed.” (Albert)

THE SPARK OF LIFE

One of the greatest biological mysteries for me when studying seed is how is it that life is generated from a seed?  At what point in its growth do seed grow or die. Where does that spark of life come from?  I was told in my biology classes that that the spark of life starts in the DNA and biochemical material of a plant.  But I also know that scientists do not know where the spark of life comes from. Scientists only have theories and hypothesis to work with and cannot fully prove where the spark begins.

In just the right conditions, the seed will germinate.  Growth occurring as a result sees new life in no obvious way resembling the origin from which it springs. Biochemical reactions cannot explain where the spark comes from. It is truly a great mystery. We are just now beginning to understand that toxins and radiation can destroy that spark or mutate it into a plant that has no chance of survival. We must learn to protect the “spark” of life.

EACH PLANT HAS ITS OWN ENVIRONMENTAL NEEDS

You cannot generalize about any wild plant-or seed for that matter. Each has its own environmental needs. Study, observation and trial and error are the tools of a good naturalist.

For instance many wild plants do not produce seed until fall and few can be expected to germinate within a few days like garden seeds. Some seeds may not germinate for years and many need cold to prepare them for germination.

Seeds from many wild flowers have embryos that are immature when they are shed from the parent plant. An after-ripening period is necessary to overcome the dormancy of such seeds before germination can take place. (Taylor and Hamblin)

Wild seeds may need a cold moist repository for periods from one month to a year according to species (cold stratification). Some seeds have very hard outer coats that require almost two years of stratification. Plants that need this cold stratification include Pacific madrone (Arbutus menziesil).

Some seeds must pass through the gut of animal in order to germinate.  Placing the seeds in a container of hot water can mimic this process.  Here are some directions for this process presented by Washington State University extension service.

“HOT WATER (mimics passage through a stomach or heat from a fire): Boil 3-6 cups of water for every cup of seeds. Don’t use an aluminum pan or softened water, as either might introduce chemicals toxic to seeds. Turn off the heat when it reaches boiling, and let the water cool for a minute or two. Pour the seeds into the water and let them sit at room temperature for 24 hours. Seeds may still need to overwinter or be cold-stratified before they will sprout. Try this technique with Hairy Manzanita (Arctostaphylos Columbian), Kinnikinnick or Common Bearberry, (Arctostaphylos uva-ursi), or Snow Brush (Ceanothus velutinus).”

For more tips on how to germinate native plant seeds check out this website put together by the Washington State University extension service.

http://gardening.wsu.edu/text/nvgrowng.htm

THE STRUCTURE OF SEEDS

Fully developed seeds usually consist of an embryo – a tiny plant with a shoot (plumule) and a root (radicle) together with seed leaves (cotyledons) – that is surrounded by a mass of food (endosperm).

Angiosperms

Flowering plants (angiosperms) are divided into two groups.

Monocotyledons have one seed leaf usually parallel veins on leaves, indistinguishable petals and sepals in multiples of three and non woody stems.

The dicotyledons, also known as dicots, have two seed leaves, net-like veins on the leaves, often small green sepals, petals usually in multiples of four or five and thicker stems that may have woody tissue, formed by the (cambium).

Gymnosperms

The seeds of gymnosperms are “naked” or only partly enclosed by tissues of the parent plant. An example would be a conifer cone.  Conifer cone seeds are wind pollinated and seeds form on the scales of the female cones.

Spores are not seeds. Plants such as mosses, liver worts, ferns, club mosses and horse tails reproduce by spores. A spore may look like a seed but is asexual and develops male and female sex organs independently from the plant that bore it.

REFERENCES

*Albert, D.A., 1995. Regional Landscape Ecosystems of Michigan, Minnesota and Wisconsin: A Working Map and Classification. USDA Forest Service, North Central Forest Experiment Station. General Technical Report NC-178.Viewed on the web on December 1, 2011 http://www.wildtypeplants.com/gentalk.html

Phillips, Harry R., Growing and Propagating Wild Flowers, An easy-to-use guide for all gardeners, The University of North Carolina Press. Available from NJ Audubon stores and many other retailers.

Taylor, Kathryn S. and Hamblin, Stephen, (1963) Handbook of Wild Flower Cultivation: a guide to wild flower cultivation in the home garden, p.14 The Macmillan Company, NY

VOCABULARY

hybrid n. Genetics . The offspring of genetically dissimilar parents or stock, especially the offspring produced by breeding plants or animals of.

rad·i·cle/ˈradikəl/ – The part of a plant embryo that develops into the primary root.  A root like subdivision of a nerve or vein.

A samara is a type of fruit in which a flattened wing of fibrous, papery tissue develops from the ovary wall. A samara is a simple dry fruit and indehiscent (not opening along a seam). It is a winged achene. The shape of a samara enables the wind to carry the seed farther away than regular seeds from the parent tree as in the maples (genus Acer) and ashes (genus Fraxinus).

Scarify– Scarification means scratching or cracking the hard outer coat of a seed to help it germinate. Some seeds  have outer shells that are extremely hard and don’t allow water through. This is one way a seed stays dormant in the fall and winter, until growing conditions improve.

WEB RESOURCES

Here is a link to a wonderful website put together by Washington State University extension service on propagating native plants from seed. http://gardening.wsu.edu/text/nvgrowng.htm

Advertisements

Read Full Post »

The wild Elwha river

In the remote corner of Washington state deep in the rain forest of the Olympic National forest a river is about to be set free.  Also set free will be thousands if not hundreds of thousands of native plants and at least seven
salmon species including the Chinook, steelhead, chum, coho, sockeye, bullhead and pink salmonids. (1)  And the river has been home to the Klallam people for millennia.

Much of the river moves fast and wild with intense churning power. River water crashes against large boulder and granite walls and then it rounds a corner and spreads itself out in flat valleys, seeming to sleep and mosey along. The kayakers dream journey, this place has remained pristine because it is locked within the vast wilderness boundaries of the Olympic National Forest.  The Hoh Rainforest is to the north, Hurricane ridge of Mount Olympus tower above the river.  The source of the clear cold fast waters comes from this mountain also.  To the north the river drains into the Strait of Juan de Fuca and it’s diverse ocean estuaries.

Giant red cedar, majestic western hemlock, Sitka Spruce, Douglas fir and big leaf maple line the river banks.  Youthful willows and red alders sprout on the river sandbars.  In other places trees over four centuries old still stand tall or lay in the forest acting as a “mother” tree to thousands of other native plants.

THE DAM REMOVAL BEGINS

On September 16th, 2011 a ceremony was held near the Elwha dam on the Olympic Peninsula of Washington State to mark the starting of the removal of two dams that bloc salmon spawns on the Elwha river. The two dams – Elwha Dam (108 feet tall, built in 1913 just five miles from the river’s mouth) and Glines Canyon Dam (210 feet tall, (Lake Mills)  built in 1927, several miles upstream of Elwha Dam) were built without fish passage, and completely blocked salmon from historic habitat.

A little over 100 years ago the Elwha river was dammed to create hydroelectric power.   Once the Elwha dam was put in place the river backed up behind and created what was called Aldwell Lake.   It was named after the man who built the dam.  This same man failed to build fish ladders on this dam and one further up the river called the Glines Canyon Dam.  In the last hundred years the vast salmon runs that swam the upper 38 miles of the river ceased, and the river ecosystem was damaged. The altering of the ecosystem was extensive. River sediments used by the salmon to lay eggs were diminished and the water in the river began to warm.  Salmon runs feed the plant life and sustain the health of the land and the forest.   Vast numbers of native plants were swamped by the damning of the river.  Before the dam the salmon runs numbered more than 400,000 fish annually. After the dam was built the count of salmon on the lower river was estimated at 4,000 fish annually.

The return of salmon to this ecosystem will return vital marine-derived nutrients to the watershed, restoring a vital food source for the range of life that inhabits it.

What is the relationship between salmon runs and native plants, forests and wildlife health?

THE SALMON – giver of life

Salmon Varieties - Elwha river

Salmon swim up streams and rivers, spawn and die.  Their carcasses create excellent fertilizer that is full of ocean minerals and nutrients. When a salmon run is destroyed native plant  and forest diversity also suffers.

Fish help create diversity and range of native plant habitat by helping to move plant seeds, roots and branches along the rivers and streams.  Some plants have parts that
break off when fish eat them, or swim through them, and the plant may float to a different area and root.

ECOSYSTEM RESTORATION HAS BEGUN

Today, the Elwha River is the site of one of the largest ecosystem restoration projects in National Park Service history. As part of the effort to restore the Elwha River ecosystem, the Olympic National Forest personnel and volunteers have been constructing a new native plant nursery called the Matt Albright Native Plant center. After the Glines Canyon and Elwha dams are removed and the reservoirs drained, hundreds of thousands of native plants will be used to restore native vegetation to the over 700 acres of lakebed that will re-emerge after the reservoirs are drained. Stabilization of the new banks to control sediment movement downstream is crucial in preserving native salmon habitat in the lower river and estuary.

For more on this project go to the website for the Friends of Olympic National Park

THE INTERRELATIONSHIP BETWEEN SALMON AND FOREST

In a recent study conducted by biologists with Simon Fraser University researchers concluded that Salmon contribute to the diversity and health of the forests.  The study showed not only did the carcasses of  the spawned-out salmon benefit stream side plants but that bear and wolves will often carry the carcasses into the forest and further “feed” the forest.

The study was extensive and covered the interrelationship between salmon and forest ecosystems bordering 50 streams on the remote central coast of British Columbia, Canada.

Link to study: http://insciences.org/article.php?article_id=9994

In addition to restoring the fish habitats, the draining of Lake Mills (and removal of  and Lake Aldwell will create an additional 715 acres (2.9 km2) of terrestrial vegetation, improving elk, insect, bird and other wildlife habitats as well. Increased sediments loads are also predicted to help restore the retreating delta at the mouth of the Elwha.

The $325 million project is expected to last three years and eventually restore the Olympic Peninsula river to its wild state and restore salmon runs.

For more on Pacific Northwest Salmon recovery project check out this beautifully illustrated booklet that includes lists of native plants that benefit Salmon.

http://www.co.snohomish.wa.us/documents/Departments/Public_Works/SolidWaste/Information/Brochures/salmonfriendlybro7-10WEB.pdf

For more on Salmon life cycles check out:

http://www.oregonwild.org/fish_wildlife/wildlife-pages/coho-salmon?gclid=CP6n8aPLt6sCFQdzgwodq10OeQ

References

(1)  Potential range map of seven salmon salmonids on the Elwha river. Website: http://www.nps.gov/olym/naturescience/potential-range-of-salmonids-in-the-elwha.htm

Read Full Post »

Click for larger image

I use a two step method of identifying plants.  I first use a profile sheet that allows me to check off key parts of a particular plant, make a sketch and collect plant samples. Then I “key” out the plant data I have collected. This allows me to indentify just about any plant I find in the wilds or in the city.

 I carry the profile sheets in my back pack when I go out in the woods or nature.  I take my color pencils with me and my profile sheet has a place on it where I draw the plant I have found.   I will put a link to an example of a good plant profile sheet you can use.

Once I have collected information about the plant I can begin to “key” the plant.

The key was actually devised over many years and categorizes the plant parts into plant family, genus and species.  You can view the key as a series of questions you answer that will allow you to get closer and closer to identifying a plant.

Pojar and MacKinnon have a great key at the beginning of each section in their book.  The Species are grouped as follows: Trees,  Shrubs, Wildflowers, Aquatics, Oddballs, Graminoids, Ferns and Allies, Mosses and Liverworts, and Lichens.

HOW TO BECOME AN EXPERT AT INDENTIFYING ANY PLANT

STEP ONE: Learn the basic parts of a plant.  Here is a link to a good source online that teaches you about the 19 basic botanical parts.

STEP TWO:  fill out a profile sheet on the plant you are trying to identify. Here is a sample of an online profile sheet

STEP THREE:  Key out the plant.  It is important to use a plant book that is designed to cover plants from your region of the world and includes plant keys.

 You choose family first.  Look at the plant and decide where it might fit.  It is a tree, a shrub, a wildflower, grass or sedge? Choose one.  Let’s say that we have come upon a tree.  Look at it and use a profile sheet to gather some information about this tree.

Here are the questions that you may want to answer.

Stem and Leaves

Stem where leaf is attached:  stipules?   no stipules?

Leaf blade  smooth edges?    toothed edges? 

Leaf petiole   long?    normal?   absent?

Leaf type (look for buds) ”  simple? ”  compound?

Arrangement of leaves (at nodes)  alternate?  opposite?  whorled?  spiral?

Needles?  Are they flat?  Round?  In groups of 2 or 5?  Other?

Next: draw a picture of the tree, its shape over all.  What does the bark look like?  Look closely at the leaves or needles.  Does the tree have a cone or flower? Take a sample.  Put it in a collection bag to study.

Now you have a profile sheet and can use a key to study what you have collected.

In the Pojar and MacKinnon book you will find small pictures that will allow you to identify the tree type.  Then you will be asked if the tree has leaves or needles and depending on what you choose to answer, you will progress to deeper information.  The key uses deduction.  Here is an example.  Let say I am trying to identify that tree again.  I am pretty sure it is a pine tree of some sort.  I look at the key for trees.

1a.  Leaves needle-like or scale- like evergreen, seeds usually in cones, not enclosed in a fruit (like a conifer).

2a – Leaves scale-like concealing the twigs                         Or

2b – Leaves needle-like, not concealing the twigs

 I CHOOSE 2b.

Under 2b I find other choices:

Needles in clusters?

Needles in clusters of 5?…..then it is a Pinus monticola

Needles in cluster of 2?……then it is a Pinus contoria

 My tree has needles in clusters of 5 –  I find that the tree is a Pinus monticola or a Western White Pine.

Pretty easy!   The trick is to have a good book that has a well prepared key.  It gets far more complex when you start trying to identify plants that flower or grasses and sedges.

If you really want to learn plant profiling and keying…pick up a copy of Elpel’s “Botany in a Day”. Thomas Elpel uses the patterns method of plant identification.  He teaches plant parts for profiling. He has keys for all the plant species and families. And, he teaches you how to understand important patterns found in the plant kingdoms.

Elpel also teaches about the hierarchy of the plant kingdom, from top to bottom.  Here it is for review:

Division (phyla)

            Class

                        Subclass

                                    Order

                                                Family

                                                            Genus

                                                                        Species

 The last three divisions are what most plant identification books and plant keys focus on. Profiling a flower is much harder than profiling a tree.  There is just so much more to know.  Basically flowering plants can be categorized into two classes:  Dicots and Monocots.

 What division of the plant kingdom does your flowering plant belong to?  Is your plant a monocot or a dicot?  Is your dicot plant a member of the Aster family?  How many petals does it have? These are just a few questions that help you profile your plant. Once you have answered these questions you will be able to easily find the right key for the plant.

 Here is some basic information about flowering plants.

 Dicots:  (two seed leaves, netted veins, usually tap rooted, usually complex branching, floral parts mostly in 4’s and 5’s.)there are simple flowers and complex flowers.
Monocots: (one seed leaf, parallel veins in the leaves, horizontal rootstalks, usually simple branching, floral parts mostly in 3’s)

 Flower types include simple and complex classes.  These classes include Buttercup, Rose, Gentian and Aster, Arrowhead, Lily, and Orchid.

 “Botany in a Day” will help you identify the correct family of a plant.  It is much easier to identify the proper genus or species of a plant after you have accurately identified the proper family. Use Botany in a Day to find the correct family, then you can use color picture books to help narrow down choices.  

 Elpel’s book has pictures and explanations of these flower types. He also has included profile pages specifically for flowers. He also covers the evolution of plants.   Visually viewing the actual plant is essential to learning about it.  And the viewing needs to include deep study of each part of the plant.   Once you understand the patterns of each plant family you will easily be able to identify and “key” the plant. 

For instance: the pattern of the Mustard family:  4 petals and 6 stamens – 4 tall 2 short.

 The pattern of the Mint family is that it has square stalks and opposite leaves, often aromatic.

 There are plenty of resources on the internet to help you identify plants also.  Here is a link to a plant guide put together by the US Department of agriculture.  It is plant guide for the Common Snowberry – http://plants.usda.gov/plantguide/pdf/cs_syal.pdf 

Create a study group or skillshare to learn about plants.

 One thing you might consider doing is creating a study group or skillshare group using “Botany in a Day” and other books to learn together.  You might have people in your group who know a few plants and be willing to share with you.

 One last thing: storytelling.  I need storytelling to remember things.  I have a Celtic mind and soul.  Because I love storytelling I am fascinated with ethnobotany.  Ethnobotany discusses how the plant was used by indigenous peoples.  Pojar and Mackinnon’s book includes the ethnobotany of the each plant.  I have also included two great references with this essay.  Erna Gunther and Nancy Turner have great books about the ethnobotany of plants in the Cascadian bioregion.  

I wish to acknowledge my plant teachers who taught me to be able to identify plants through profiling and keying. My favorite plant identification teachers are Thomas J. Elpel who wrote” Botany in a Day”, and Jim Pojar and Andy MacKinnon who edited” Plants of the Pacific Northwest Coast”.

Hope this explanation helps you get started on how to identify plants.  Until next time – see you in the deep woods!

 Next time: Wapato – the liberation plant

 References

 Gunther, Erna (1945) Ethnobotany of Western Washington, The Knowledge and Use of Indigenous Plants by Native Americans, University of Washington Press, Seattle and London.

Elpel, Thomas J. (1996) Botany in a Day:  The Patterns Method of Plant Identification, Herbal Field Guide to Plant Families, 4th Ed (2004) HOPS press LLC, Pony, Montana

Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Turner, Nancy J. (1979) Plants in British Columbia Indian Technology, British Columbia Provincial Museum, Victoria, British Columbia, Canada

Online resources

Thomas Elpel’s website: http://www.wildflowers-and-weeds.com/

Website of Pojar and Mackinnon’s book “Plants of the Pacific Northwest Coast” http://www.lonepinepublishing.com/cat/9781551055305

US department of agriculture plant guide:  http://plants.usda.gov/plantguide/pdf/cs_syal.pdf

Read Full Post »

Kinship with all things

For thousands of years humans have tried to categorized plants into systems that could be memorized and recalled when needed. At first plants were named after the color, smell, location and how it might be used.  Then came the domination culture and plants were named after the tribe or culture who won the battle. Wars were fought over control of trade of a plant (spice wars).  Naming a plant or species was also done to gain control over a culture. A prize of a conquest was to re-name all indigenous species. 

Over thousands of years of conquests humans began to search for a common language or naming system that would allow them to explore any area of the planet and identify a species of plants, animals or minerals – it was a search for connection to what was already known. Thus the bionomial Nomenclature method was born.

The binomial nomenclature method is a formal system of naming species of living things.  The system was devised over many centuries but was formally organized by Carl Linnaeus.  Linnaeus (1707 –1778) who was a Swedish botanist, physician, and zoologist, laid the foundations for the modern scheme of binomial nomenclature.   I am going to be very clear here that Linnaeus began to organize the names of species after the culture of Europe was destroyed by hundreds of years of war, genocide and domination. During these hundreds of years most of the healers, naturalists and scientists were killed or impisoned.  Plants had names before Linnaeus but much of that information was lost due to oppression.  Institutions such as the Roman Empire and then the domination by the Roman Catholic Church destroyed the community and family education systems of European culture. In North America mass genocide decimated tribal First Peoples. The knowledge of plants was mostly lost or kept very secret by the indigeous people.  Europeans came to North America and renamed the plants and animals and geologic areas of this continent.

That said, Linnaeus was paid to name the species and he inherited a complex and confused system of knowing. The system of knowing was intentionally kept complex so that only a few knew the secrets of the plants. Plants were the key to food, medicine and access to nature and the land.  For hundreds of years a person who needed healing had to go through a priest or physician caste for prayer, herbs, and treatment (much of which was very destructive to human health and wellness).

Much of Linnaeus’ work was done in Sweden.  In the 1750s and 60s, he continued to collect and classify animals, plants, and minerals, and published several volumes. At the time of his death, he was renowned as one of the most acclaimed scientists in Europe. He added knowledge to a system of hierarchical kingship with humans at the top of the pyramid.

The essence of the binomial system of naming is this: each species name has two parts, the genus name and the species name (also known as the specific epithet), for example, Homo sapiens, which is the scientific name of the human species. Every two-part scientific name is either formed out of (modern scientific) Latin or is a Latinized version of words from other languages.

The two-part name of a species is commonly known as its Latin name. However, biologists and philologists prefer to use the term scientific name rather than “Latin name”, because the words used to create these names are not always from the Latin language, even though words from other languages have usually been Latinized in order to make them suitable for this purpose. Species names are often derived from Ancient Greek words, or words from numerous other languages, including tribal languages. Frequently species names are based on the surname of a person, such as a well-regarded scientist, or are a Latinized version of a relevant place name. This person was identified as having “discovered” the species. 

Plants had names before Linnaeus and other scientists came along and named species after themselves.  Many First Peoples find this re-naming of plants and other species as offensive and part of the genocide and domination of their culture.  I agree. But there were problems with local naming of plants.  The same plant found over large geological areas could have different names, in a different tribal language.  For instance, take the plant name “Kinnikinnick“.

 In Cascadia the scientific name is Arctostaphylos uva-ursi.  It was called Common Bearberry by European immigrants. And it had several tribal names as well.  The word Kinnikinnick is a eastern North American tribe (Algonquian) term meaning “smoking mixture”.

According to Erna Gunther 1 some Cascadia tribal names for the plant include:

Tribe               Tribal language name for Archtostaphylos uva-ursi

Chehalis –“ kaya’nl”

Klallam – “Kinnikinnick”

Makah –  “kwica’”

Skokomish –  “Sk!ewat”

Squaxin –  “s’quaya’dats

 But what is identified as Kinnikinnick throughout North America and Europe is actually several plants. And the word “Kinnikinnick” means “that which is mixed”.  It is also known as “a mixture that is smoked”.   By using the Binomial nomenclature method of plant identification, botanists, herbalist and naturalists can accurately identify this plant found in a certain geographical area.  And so Binomial nomenclature can be very useful in learning about native plants.  I learned this method and I also search for the ancient names and knowledge of the plants or the ethnobotanical knowledge of plants.  It all works, it all has meaning and it all is worth knowing.

Some plant specialists such as Alan Kapuler have come up with a connection between species that are based on “Kinship” and view all species as equal.  Kapuler says “Plants and other species do not need Kings”.2    There is no ruling species.  Kapuler believes strongly that we must place more value on the relationship between species as the core notion for optimizing diversity and subscribes to the Dahlgren Coevolutionary Layout.  That is, we should realize that a Giant Sequoia or a sunflower is just as important as a human life. We humans cannot continue to destroy whole groups of species and expect to live.  When we allow one species to become extinct, we are moving ever closer to our own extinction.

The Binomial nomenclature is used in “keying Plants”.  Learning to “key” a plant will allow you to identify any plant that you find.

Next time:  In part 3 of this series on plant identification I will teach you how to “key” plants

Until next time: See you in the deep woods.

References

1. Gunther, Erna (1945) Ethnobotany of Western Washington, The Knowledge and Use of Indigenous Plants by Native Americans, University of Washington Press, Seattle and London.

2. Kapuler, Alan M (1997) System Tree and Kinship Gardening, Peace Seeds Resource Journal, Vol. 8. Peace Seeds publishing, Corvallis, Oregon

3. Kapuler, Alan M (1997) An Ark for the Plants, Construction, Planting, and Growing a Kinship Garden Using the Dahlgren Coevolutionary Layout, Peace Seeds Resource Journal, Vol. 8, Peace seeds Publishing, Corvallis, Oregon.

Online resources

More on Alan Kapuler

Mushroom’s Blog (Alan Kapuler) http://mushroomsblog.blogspot.com/2005/01/descriptions-from-dr-kapulers-peace.html

Read Full Post »

Shooting stars at Mt. Shasta

“The day man experienced the consciousness that made him feel separate and superior to the other forms of life, at that moment he began sowing the seeds of his own destruction.” (U. G. Krishnamurti) 

I am on a journey, a quest to save native plants from destruction by our mechanized minds and world.

I want to try and save what is left of the natural world. I think it is important. I want there to be a beautiful, healthy, safe world for my children, my grandchildren and  for seven generations after me.  There are so many beautiful parts of God’s creation worth saving. It all needs to be saved.  The web of life fits together like a puzzle. When one part goes missing, the rest is weakened. I choose to try and save native plants.

We have been going down this path for some time. Most humans are oblivious to what is happening to our planet, or they choose to close their eyes and try to ignore it.  I choose to teach about native plants because they choose me and I would not want to live on this planet if all the plants were gone. In fact, none of us could.

All parts of the web of life are worth saving.  The polar bears, the whales, the brown pelican, the hummingbirds, the great trees and the great forests are all worth saving.  The water and the air and the earth are needed for the web of life to survive. They are all worth saving.  Each of us who understands the importance and immediacy of saving the planet will need to choose where to focus. I choose native plants.

I am almost old and I have been on this journey for some time. I have been blessed to have good teachers.  When I was a child living near the forest I only knew a few names of the plants.  I spent years exploring the forest before I found a good teacher to tell me about the plants. The plants were always there for me, healing me, and helping me through loss and in times of wonder.

I walked through the forest speaking to the birds, the tree,  and the other plants. I built a nest in a tall Red cedar tree and climbed the great oak. I carried a pad and pencil with me into the forest and sat for hours watching the forest, observing the plants and wildlife. I made note of how the petal of a flower connected to the stem and how the stem connected to the root. I drew pictures of what other plants might be growing nearby so I could remember how to find it again.  I was amazed at the ingenuity that plants develop in order to survive.  I observed that the natural world is a place of connections.  Nothing is alone. I saw how the native plant connected to all species including humans.

I had teachers when I was a child who told me stories about the plants: grandma and my wonderful father.  Very little was taught to me in grade school or high school about native plants. I remember being told not to eat anything in the forest because it was probably poisonous.  In fact as a women I was only allowed to take one science class in high school.  What I learned later from history books was that for thousands of years women were the keepers of plant knowledge.  As Black Elk said: the world has turned upside down.

I combed over books. I looked for pictures and I looked for thehistory of the plants.  I never took a botany class in college although I had many mind-numbing science classes.  I did not want to memorize factoids, I wanted to understand and know the plants. I did not want my childhood wonder to be destroyed by long intense lectures and pressure to “get the grade”.  And yet I have learned that it is helpful to learn about plant kinship.

So I asked myself: how could I teach others about native plants?  What would I want them to know?  How could I get other humans to understand that native plants are not on this planet just for our pleasure?  Would I teach you one plant at a time?  Or would I teach you all about “keying” plants using the “binomial nomenclaturemethod of plant identification.  I surmised that people learn differently.  So I will be teaching all three methods, keying, “binomial nomenclature” and grandma’s way.

Grandma

Who was grandma?  She was an older woman who lived across the fields and forest from me when I was a child.  She loved the natural world. She was patient and kind and a very good teacher. I discovered her one day in a field of Queen Anne’s lace collecting the tiny purple flower found in center the plant. She was going to make dye for fiber baskets. We struck up a friendship. She told me many stories about the plants and I am forever grateful that she taught me about native plants.

If I was to try to teach you about native plants using grandma’s method I would take you on a walk in the forest.  I would ask you to bring a notebook and a pencil. I would find a place that attracted me. We would sit amongst the plants and we would be quiet and observant. I would ask you to write what you are observing. I would ask you to make notes about the weather, the time of year, the condition of earth: is it wet or dry? Does it have a smell?  I would wait until a particular plant came to me attention. And then I would ask you to observe it as I told you a story about this plant. It might be a story about its structure or connection with the forest. Or it might be a story about how to use the plant for food, medicine or how it might feed and attract wildlife.  If it is edible, I would ask you to taste it. I would ask you to find its flower and draw a picture of it.  I would ask you to write about how it connects to the rest of the forest.  I would try to tell you a story about how the First People’s used this plant. I would hope that this story would help you remember it. This is my way of learning and teaching.

Shooting Star (Dodecatheon jeffreyi)

 Over the years I have carried my water colors into the wild places and tried to capture the beauty of plants in their own spaces.  I rarely pick wild flowers. I have attached a painting I did of Shooting stars in a meadow just below Mt. Shasta in Northern California.  The variety is called Tall Mountain Shooting Star (Dodecatheon jeffreyi).  This plant is so beautiful.  Pojar and McKinnon in their book “Plants of the Pacific Northwest Coast” describe the special relationship between Shooting stars and bumblebees. The Shooting star they say provides a good example of “buzz pollination”. Pollen is shed into the stamen tubes of the flower. The sound waves set up by the buzzing of the bumblebee dislodges the pollen and makes it available to the bee. A member of the primrose family (Primulaceae) the plant is most often found in moist meadows. The First peoples of the Willamette Valley, Okanagan, and Yurok tribes mashed the flowers and used the stain to dye fibers and wood.

There – I just taught you a little about this plant. Where to find it, what it was used for and how it interacts with wildlife. That is the way I like to teach. But there are others and I cannot always be with you.

So until next week – See you in the deep woods…

Next time:  Kinship and the “Keying” of  plants – teaching you to be self sufficient in your learning.

References:

Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Turner, Nancy J. (1979) Plants in British Columbia Indian Technology, British Columbia Provincial Museum, Victoria, British Columbia, Canada

Read Full Post »

Fenders Blue Butterfly and the Kincaid Lupine

I attended a wonderful talk at the Straub Environmental Center is Salem, Oregon last night.  The speaker Gail Gredler an instructor at our local community college spoke about creating native plant gardens. She answered a lot of questions I had about what is a native plant and why are they important to humans and to the planet.

What is a native plant?

First, according to Gail a native plant can be described as plants growing before European settlements started about 200 years ago. Other sources I found also describe them this way: “A native (indigenous) species is one that occurs in a particular region, ecosystem, and habitat without direct or indirect human actions” (Kartesz and  Morse 1997; Richards 1998

Gredler explained that trying to say what is native and what is not is getting harder because some plant specialists are cloning and messing with the DNA of native plants to create “nativars”.  These mad scientists (my judgment) are creating these bio-modified cloned plants so they can patent the plant and make money on each sale of the plant or its seeds.  Bio-modification is not made with ecosystem health in mind so we don’t know if there will be detrimental effects.  People are beginning to sell the look-alikes as natives and so it is important to find a native plant nursery that is registered.  (See resource list at end of this article).  Insects may or may not recognize the plant chemicals of these “nativars”.  Some research on bio-modified corn and other grain crops are showing that insects will not pollinate the crops because the plant chemicals are toxic to the pollinator. The bio-modified grains are causing issues with human and animal health also.

Insects need native plants to survive.  We need insects alive so that our food and medicine and utility plants can be pollinated and fertilized. Without insects and native plants our biome will experience an ecological collapse.

 Ke Chung Kim an entomologist with Penn State University writes in his book “Biodiversity, conservation and inventory: why insects matter”, that insects and anthropods have existed for more than 400 million years and after surviving the Permian and Cretaceous mass extinctions, arthropods have been the most successful of all living things and along with other invertebrates constitute more than three-quarters essential for human food production, and maintaining rain forests, savannahs and other important components of global water storage in ecosystems.

 Without insects we would experience complete eco-system collapse. Native plants are the only food that many pollinator insects will consume. Without native plants, many insects such as the Fender Blue butterfly, the Franklin’s Bumble Bee (Bombus franklini) and Mason bees (Osmia cascadica) will become extinct.  Bringing native plants back into our environment is essential to the survival of humans, fauna and flora. Once the insects are gone, then will fall the birds, squirrels, foxes, rabbits, deer, and other fauna. The food chain will collapse.

According to Gredler 90% of insects depend on native plants for food. Local insects evolved with native plants and are attracted to particular leaf chemicals.  The leaf chemical allows the insect such as the Fender Blue butterfly and pollinators to find food. Only 10% of insects are generalist feeders.

Here are 7 reasons on why native plants are important according to Gredler.

  1. Resource conservation:  Native plants do not need a lot of extra water. They are drought resistant. Most native plants that would grow in Oregon and (Washington, British Columbia) valleys do not need extra water in the summer time. They need well adapted to our dry summers.
  2. Save on the use of fertilizers and pesticides:  Native plants do not need pesticides. They are already acclimated to insect populations and can take care of themselves, thank you.  Fertilizers are applied sparingly.  Having plants grow in correct soil types is more helpful.
  3. Insects need them to survive. As already mentioned: 90% of insects depend on native plants for their survival. 37% of animal species eat herbivorous insects.
  4. Native plants in landscapes will stop the desertification of Cascadia.
  5. Habitat fragmentation is a hazard to wildlife.  Bringing natives back will stop the ecosystem collapse. Native plants provide food, water, and habitat for wildlife.
  6. Plants are the only thing on the planet that can harvest the sun’s energy and create their own food.
  7. Native plants are not necessarily aggressive and can be out done by non-natives. They will need our help to come back.  We need to stop planting aggressive non-natives like the Butterfly plant.

Here are few more from other sources:

8.  Native plants are important to human health. The vast array of natural chemicals is already the basis for ~25% of all U.S. prescriptions, ranging from aspirin (bark of willow tree) to taxol (bark of pacific yew tree).  These plant based medications easily break down in our ecosystems unlike pharmaceutical synthetic hormones and drugs. Use native plants for healing and stop the chemical soup poisoning of our world.

9. Native plant heritage: plants were used for almost everything that humans needed to survive. Think what the world would be like if we stopped producing toxic plastic “stuff” and went back to living simply with few things, essentials made from plants: clothes, homes (not from trees but from fast growing plant fiber and earth such as in Cob buildings).  Paper not made from our forests but from fast growing plant fibers. Humans lived with this technology for hundreds of thousands of years.  We may have to adjust to new ways of living to survive.

10. Native plants can be used to restore our land.  They easily adapt to harsh conditions and have been used in the repair of streams, meadows, savannahs, forests, and other fragile landscapes.

According to Gredler since the 1840’s over 80 million acres have been taken out of native landscapes.  Landscapes have been paved over, planted in non native turf grass and tilled for non native crops.  Gredler called this process the “desertification of Oregon”.  I call this process the desertification of Cascadia because this destruction of the bio-region is happening everywhere.

According to my other source Kartz and Morse, although only about 737 native plant species are protected by the Endangered Species Act, it is estimated that nearly 25 percent of the 20,000 native plant species in North America are at risk of extinction. It is becoming generally recognized that in order to preserve individual species, their plant communities must be preserved. This includes the preservation of native plants that are not yet in danger of extinction, but still play an important role in native ecosystems.

Native plant species provide the keystone elements for ecosystem restoration. Native plants help to increase the local population of native plant species, providing numerous benefits. There are specific associations of mycorrhizae with plants, invertebrates with woody debris, pollinators with flowers, and birds with structural habitat that can only be rebuilt by planting native plants.

 We need your help.  Begin today to tear out the turf and aggressive non-natives and plant your yards to become a native plant repository and sanctuary.

Resources:

Where to find a list of reputable native plant nurseries in cascadia

1. Online PDF booklet of native plant nurseries in Oregon and Washington

http://extension.oregonstate.edu/yamhill/sites/default/files/wholesale_np_nurseries.pdf

2. Sources of Pacific Northwest native plants – a online Pdf booklet

http://extension.oregonstate.edu/yamhill/sites/default/files/sources_for_native_plants.pdf

3. The plight of the Fenders Blue Butterfly and its relationship to Kincaid’s Lupine

http://www.xerces.org/2010/12/10/saving-the-fenders-blue-butterfly/

If you would like to learn more about the relationship between insects and humans, animals and plants, check out the Xerces Society website at:    http://www.xerces.org

References

Kartesz, John, North Carolina Botanical Garden, and Larry Morse, The Nature Conservancy. 1997. Personal communication

Kim, Ke Chung (1994) Biodiversity and Conservation, Volume 2, Number 3, 191-214, DOI: 10.1007/BF00056668, Center for Biodiversity Research, The Pennsylvania State University. http://www.springerlink.com/content/q465056vr1t45u67/

Read Full Post »

 

Artic Lupine

Salem, Oregon

Amateur Naturalist Series -Landscaping with Natives, Gail Gredler

January 13, Thursday, 7-8:30 pm Program: Creating Native Plant Gardens. Gail Gredler, Instructor of Horticulture at Chemeketa Community College, will explain how to create native plant gardens and landscapes. She will highlight the benefits of gardening with native plants and discuss which plants to use to create a haven for birds, pollinators, and other wildlife. The class costs $5 and is open to the public and is co-sponsored by Willamette Valley Chapter of the Native Plant Societyand the Straub Environmental Learning Center. Location: 1320 A St. NE, next to Olinger Pool, near North Salem High. Registration is required. To register, call John Savage at 503-391-4145. All classes are held at the Straub Environmental Learning Center at 7:00 p.m.  Call or email Alexandra at 503-391-4145 or fselc@fselc.org to register.   Website:  http://www.fselc.org/programs.html

Eugene, Oregon             January 10, Monday, 7:30 pm

Meeting: Bruce Newhouse presents “Delights, Myths and Legends of Native Plant Gardening.” Can midwinter exploration of gardening delights, myths and legends bring spring here sooner? Let’s try it and see! Join us for this presentation on creating “deep gardening” goals that can make a garden both good looking and purposeful. Is there really a difference between planting native or non-native plants in a home garden? Do native Plants have special care needs? Native plants are not easy to find for sale, so where can I get them? These and other questions will be addressed in this show. You can create a small ark of native biodiversity in your yard if you are willing to include native bees, butterflies and birds as part of your inner circle of friends. Sharing between like-minded gardeners will be encouraged during this event. If you would like to read a good primer, try “Bringing Nature Home,” by Douglas Tallamy. Can spring be far behind?

Location: EWEB Training Rm., 500 E. 4th Ave., Eugene. For more info call 541-343-2364.

 Ashland, Oregon

Wildflowers (many of which are endemic and very rare) begin to bloom in the lower altitudes in February and March. The Native Plant Society leads walks throughout the Rogue Valley on Saturday mornings (See www.npsoregon.org)

Tundra Swans

RIDGEFIELD, WASHINGTON

Ridgefield National Wildlife refuge – Annual return of the trumpeter and Tundra Swans also large repository of Wapato and other native water plants.  http://ridgefieldbirds.com/TheRefuge/Birds/ridgefield_NWR_tundra_swan.html

Seattle, Washington – Native Plant Society of Washington

Seattle Chapter     –    Saturday, January 8th

Tradition Lake Plateau, led by Nelson Salisbury and Louise Kulzer
Come join our Chapter Botanist, Nelson Salisbury, and Field Trip Chair, Louise Kulzer, for a bit tamer New Year romp on the Tradition Lake Plateau. It’s not New Year’s Day, but it’ll still get the year off to a great plant start. We’ll peruse the extensive plant list created by Fred and Ann Weinmann and see how many of the choicest mid-elevation plants we can find. Pacific willow, the most upland of the willows, mature ninebark, cherry and a conifer of great girth (was it a hemlock?) are some of the highlights I remember from a past field trip. Wintering waterfowl should be on the lake, Douglas squirrel and woodpeckers are also to be expected. Trip length can range from 3-5 miles, depending on the group’s desires, with moderate elevation gain.Note:  The gate to the parking area is closed, so we’ll meet at the gate and hike the .4 miles in.  Dress warmly! 
Date & Time Saturday, Jan. 8, 2011; 9 AM
Location Meet at the parking area by the trailhead at 9:00 AM. Take I-90 past Issaquah to Exit 20, then turn right on the frontage road to the gate. Note:  The gate to the parking area is closed, so we’ll meet at the gate and hike the .4 miles in. 
Contact Contact Nelson at 206-372-4255 or nelson@earthcorps.org to sign up.
Bring Bring water and a lunch and dress for the weather.

 

Native Plant Identification Workshop

Join Nelson Salisbury, Chapter Botanist, in a free plant identification workshop that is offered before each Chapter meeting at 5:30 PM in CUH, Main Hall.  While the workshop is oriented primarily toward beginners, anyone who wants to work on improving keying skills or their familiarity with the northwest flora is welcome.  Feel free to bring samples of unknown plants in for identification.  We will have plenty of material and tools if you come empty-handed.

Tri-cities – Washington

Koma Kulshan

Winter Twigs and BudsMeet at 9 AM at North Chuckanut Trailhead. We will decide then and there on route, depending on weather and interest.  We might hike four or five miles, but should be back by 3:00.  This winter walk will emphasize identification of deciduous trees and shrubs based on their twigs and buds (copies of a key will be provided).  There is a diverse assortment of native and non-native plants along the upland trails and along the Chuckanut beachfront. Bring lunch, and dress for the weather, including boots for muddy trails. 
Date & Time Saturday, Jan. 29, 2011; 9 AM
Location Meet at 9:00 AM at North Chuckanut Trailhead (the parking lot on Chuckanut Drive south of Old Samish Road and before California Street).
Contact Contact Allan Richardson at 733-5477 or boghill@earthlink.net to confirm. 

http://www.wnps.org/chapter_info/chapter_trips.html

British Columbia

Vancouver, British Columbia

Thursday January 6, 2011

Presentation: Fabulous fungi of Haida Gwaii
Paul Kroeger 
Until recently, very little was known about the kinds of fungi found on Haida Gwaii. Why should we care? Because fungi play incredibly important roles in ecosystems. Without fungi, we wouldn’t have the rich native plant communities that we have in BC.
Paul Kroeger is one of a team of mycological specialists who has been studying fungi in Haida Gwaii since 2003. He’ll talk about some of the species found there – including some rare species – and about the role of fungi in maintaining the health of our forests and other plant communities.It all happens at 7 p.m in the Cedar Room at VanDusen Botanical Garden, at 37th and Oak in Vancouver.Coming soon:
February 3: Edible plants of Coastal BC with Andy McKinnon
March 3: Flora of White Lake with Terry McIntosh
April 7: Pink Mountain Revisited with Ron Long 

 http://www.npsbc.org/Education/education.htm

Read Full Post »

Older Posts »

%d bloggers like this: