Feeds:
Posts
Comments

Posts Tagged ‘Cascadian bioregion’

Earth’s the right place for love:

I don’t know where it’s likely to go better.
I’d like to go by climbing a birch tree,
And climb black branches up a snow-white trunk
Toward heaven, till the tree could bear no more,
But dipped its top and set me down again.
That would be good both going and coming back.
One could do worse than be a swinger of birches.

Excerpted from Robert Frost – “Birches”

white birch grove

White Birch Grove

Preparing to write about these lovely deciduous trees has been quite a journey.

I have found that what I know is only the tip of the iceberg of what I need to know.  The White or Paper Birch is a tree that I am slowly becoming familiar with. My early relationship was one of taking for granted that this tree would always be here for me to sing to, climb and use as crafting materials.  I did not ever imagine these lovely fast growing groves of trees could be used to heal, attract some of the most powerful healing fungi in the world or that they would one day be imperiled.

My father was a land surveyor and he sometimes took me and my siblings along for the day on his forays into the forested areas of Oregon. On a early summer day many years ago he took us on a walk along a coastal mountain stream.  The White Birch was plentiful and lovely.

We came upon a White Birch which had a broken branch half hanging.   He took some of the sap dripping from the broken tree, spread it over the wound, and then he took the shedding white bark for which it is known and used it to tie the branch back in place.   This is just one of the “signatures” of this tree.  Later I would learn that birch bark was used to set into a cast, the broken bones of humans.  On that day long ago, my father gave me some of the sap to chew and told me that it would be good for my teeth and mouth.  It was sweet and tingled in my mouth. I asked daddy about the bark.  I asked if I could remove some naturally occurring shedding white bark without white birch hanging barkharming the tree.  He told me that in other parts of the country, the bark was used to make canoes and to line baskets and wrap food and that it had probably been used as paper somewhere in the world. He told me there was time of year in the late spring and early summer when the bark was easy to remove without harming the tree.  He told me the tree sap was very healing as was the bark and that is why he used it to repair the broken limb.

Later I used some of the bark to make clothes for my doll and I made a small pouch to hold special things.  I made a small canoe that I could push across our pond.   I found sanctuary in the birch grove and sat in silence to watch the wild birds skip from branch to branch.  In late summer the tiny rounded samara became part of my secret cache of wild seeds.

This was my introduction to White Birch.  It was easy to interact with the community of birch. I can imagine now that it is this easy relationship to the tree and bark that attracted the First People. It is also easy for humans to take this tree for granted, not respect it.  As you will read, the White Birch is a powerful healer for both human and forest communities. It is a tree that welcomes the fungi mat (mycelium) and heals the wounds caused by fire, humans, disease and floods.

Betula papyrifera (Paper Birch, also known as American White Birch and Canoe Birch) is a species of birch native to the northern part of North America and the southern part of Canada.  The species birch is found all over the world.

PREPARING THE WAY – Birch, Alder, Aspen

Some trees are steady and slow in growth reaching to the tops of forests they create an umbrella for the web of life.  And, some trees are pioneers, growing fast, living a short time and creating a birthing platform for many other species. The White Birch is a pioneer species. The stands of White Birch come on fast and can grow only to about 20 meters high (65 feet). A healthy tree can live to be 40 or 50 years old. During their growth the pollen from birch catkins attract a great many pollinators that will bring life to other plants in the forest. The sap and bark attract a great many fungi that live symbiotically on the tree.  The fungi are then dispersed into the disturbed soils to help create the forest mycelium mat.  For a long time scientists and foresters thought the fungi found on the birch were a sign that the tree was dying.  They thought the fungi were killing the tree.  Now we know that the birch is a nurse tree to a great many beneficial fungi. It chooses which fungi will inhabit it and also has a chemical defense method that will trap certain fungi in the heartwood or on the outer barks.   The sap actually has pesticide qualities.  It detracts insects such as termites and certain bacteria that might do the tree harm. According to Grieve in her book A Modern Herbal, Birch tar was used to repel insects (p. 103)

Like the Red Alder and Aspen, the White Birch lives in symbiotic relationship with nitrogen-fixing bacterium.  This relationship is called mutualism. In mutualism: plants gain nitrogen compounds, the bacterium gains carbohydrate and an environment with reduced oxygen. The plant then changes carbon dioxide to oxygen and releases it for human use.

White birch as a pioneer deciduous species is often found in groves on the edge of newly formed second-growth tree communities or near the edges of changing forests. This tree shows up in ecosystems that have been disturbed by fire, flood or human decimation.  They can be found in open or dense stands of forest usually in an opening. They can be found in lowlands to lower mountain slopes in drained sites or along bogs and other wetlands.  B. papyrifera requires high nutrients and sun exposure.

These trees do not live long. From the time they spring up and then die, can be as little as 20 years or as much as 50 years. It is easy to propagate and the young saplings are often found spouting from a cut stump.  Like the Red Alder, the White Birch is a very important part of establishing the mycological forest community. Without these forerunners of forest health, there would not be a fertile soil and microbiological environment that would support the deep wild forest.

NAME

The name is a very ancient one, probably derived from the Sanskrit bhurga, ‘a tree whose bark is used for writing upon’ (Grieve, p. 103).  The First Peoples of the Cascadian bio-region have names for this tree also:

Salish = âîçêáÛ – birch bark

âîçêálî, îçêá white birch, paper birch, birch bark.

paper birch îçæálî, îçæá birch; paper birch.

The English name is White Birch, Paper Birch or Canoe Birch

The Latin botanical name is: Betula papyrifera

LEAF

white birch leafThe leaf is alternate, deciduous, oval to round and sharp-pointed. The leaf of the White Birch can be longer when on young trees. The color is dull green above and paler and hairy below.  The margins are doubly toothed. (Pojar and Mackinnon p. 47)

Learning the shape of the leaf is important because there are other trees that grow in similar environments that look much the same when young.  For instance bitter cherry has a similar bark and structure but the leaf is oblong to oval, and less pointy.

The FLOWER AND THE SEED

The flowers, and thus the seeds, of white birch are arranged in a pendant cluster about an inch long which is referred to as a catkin. Male white birch leaves-catkins-conesand female flowers are on separate catkins. When pollinated, the female flowers develop seeds, each of which is located on a scale in the catkin.

Male and female flowers grow in separate catkins and flower at the same time.  Sometimes there will be young leaves emerging as the tree flowers. The buds for the male catkins appear in autumn, when it begins getting cold.  During spring, the tassel-like catkin will produce yellowish or grayish green flowers that produce pollen with an aromatic scent.

Over the winter the catkins disintegrate, dispersing both seeds and scales.  You can identify the species of birch from the shape of its scales or nutlets.  Again, the white birch nutlet is round with wings that are broader than the body.

The male catkins will fall away from the tree, while the female catkins will form into cones in the summer. These cones vary from a deep brown to a tan, though they may also have a reddish color to them. During late summer, the cones will open and in autumn, the cones will fall, spreading their nutlets across the ground. The nutlets are then dispersed on the wind.

BARK

The tree is most familiar to us humans because of its bark.  The bark peels in papery strips in late spring and early summer. The bark of this tree is commonly thought of as being white or grayish white, but also comes in yellowish or dark gray.  It is often marked with brown horizontal lines of raised pores. The bark is highly weather-resistant. The wood itself is highly flammable and can be burned as firewood even when damp.

MEDICINE

Birch syrup is a sweetener made from the sap of birch trees, and used in much the same way as maple syrup. It is also used as medicine syrup.  The sap is boiled down to produce birch syrup.

The same sap is fermented to make beer and wine.  Birch beer is very popular in Northern Europe and a few areas of North America.

The oil is astringent, and is mainly employed for its curative effects in skin afflictions, especially eczema, but is also used for some internal maladies. Oil of wintergreen is distilled from its inner bark and twigs (Meyer p. 15)

The inner bark is bitter and astringent, and has been used in intermittent fevers. The bark is ground to a fine power and used to treat diaper rash.  It is also used internally to treat a great many inflammatory and bacterial infections.

The vernal sap is diuretic. The resin contains zylitol, a disinfectant used as a natural tooth cleaner. However, it may also contain terpenes. Used in making turpentine, terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. It was also reported that those who chewed the resin could get somewhat of a “buzz” (Pojar and MacKinnon p.47.

One of the chemicals that has been isolated from birch bark is called betulin. Betulinic acid, which is made from betulin, is being studied as a possible cancer treatment. Betulin has also been found in many other plants.

White Birch is used on the skin to treat warts, eczema, and other skin conditions. Promoters say that birch tea can be taken internally as a diuretic or a mild sedative and that it can be used as a treatment for rheumatism, gout, and kidney stones. The leaves are sometimes used on the scalp to help with hair loss and dandruff. Birch tar (oil distilled from birch bark) is used on the skin for skin irritations and parasites. Other claims for birch bark include the treatment of diarrhea, dysentery, and cholera.

WHITE BIRCH AND THE POWERFUL FUNGI CHAGA (THE TINDER CONK)

Chaga conk on a White Birch

Chaga conk on a White Birch

White Birch Moxa

Before I started this study of the White Birch, I did not know that the First Peoples in Cascadia used Moxabustion.  Moxibustion is the application of heat resulting from the burning of a small bundle of tightly bound herbs, or moxa, to targeted acupoints on the human body. The burning plant material is traditionally mugwort.  It is sometimes used along with acupuncture.  It is used to open up or move energy in a part of the human energetic body. It is well-known that for thousands of years far-eastern cultures have used moxabustion as part of their healing regimes.  What I was not aware of was that the First Peoples of North America, Central America and South America also use Moxibustion.  As I studied the White Birch I came upon a quote that perked up my inquisitive nature.  The book is called A Modern Herbal published in 1931 by Mrs. M. Grieve.  Grieve reports that birch leaf and bark was used as a moxa, and that it was burned on top of a fungi.  Both the birch parts and fungi were used to create a moxa for healing. Here is a quote from Grieve’s published works.

“Moxa is prepared from it and regarded as an effective remedy in all painful diseases. A type of moxa is made from the yellow fungus that is excreted from the wood of the White Birch, which sometimes swell out from the fissures of the bark” – Grieve p. 104

After some research I found that there are several types of fungi that are yellow and live in the fissure of the White Birch.  It is a tree that attracts fungi as it ages. Here is short list of some of the edible and medicinal fungi that grow on birch.  Ganoderma applanatum, or artist’s conk, Oyster mushroom (Pleurotus ostreatus), Turkey tail (Trametes spp.) attacks fire-scarred, wounded and drought-, freeze- or sunburn-stressed birches. Hairy (T. hirsuta) and colored (T. versiclor) turkey tails, Lenzites betulina, commonly called birch mazegill, Yellow Brain fungus and Chaga (Inonouts obliquus). According to Paul Stamets, most of these fungi have several medicinal properties, including antioxidant, antimicrobial, antitumor, and immunosuppressive activities. (Stamets 2005)

There are so many fungi attracted to the White birch that I would only be able to identify which was used as a moxa by contacting an expert.  But, there are clues.  It is yellow; it is used for burning as a moxa.   Was the fungi Chaga (Inonouts obliquus) also called Birch Tinder fungus Grieve’s moxa?  Chaga has a somewhat yellow underbelly.

I found several books that stated that the First peoples burned plants for many reasons; healing, food, spiritual connection, and fire carrying. It is well know that the First Peoples of all cultures across the globe including those of Cascadia burned plants as a method of reconnecting spiritually to the natural world.  They smoked and burned plants for healing and for ceremony. And they used the burning of plants as a method of healing via moxabustion.  One method of releasing essential oils in a plant or bark was to burn the plant, or place it on burning material and let the spark ignite the essential oils of the plant.  This method was often used to help healing substances connect with hard to reach areas of the body, such as cartilage and deep tissues.  My investigation found that in the practice of shamanism, moxabustion was essential to the healing process.

Let’s look at Chaga and its relationship with the birch.

Many mushrooms prefer a particular wood for their growth because they need the nutrients and conditions that they can get from that wood. Some form symbiotic relationships with certain trees, as the chanterelle does with birch, but many also feed on dead, decaying wood. There are also mushrooms that parasitize birch trees and which will kill weakened trees, such as the birch polypore (Piptoporus betulinus), a shelf fungus with an interesting history.

Chaga, a fungus in the Hymenochaetaceae family is in a symbiotic parasitic relationship with birch and other trees. The sterile conk that is Chaga is irregularly formed and has the appearance of burnt charcoal. Chaga was called the Birch tinder fungus because it was used as a means of carrying fire from one hearth to another.  The fungus was lighted and it carried the ignition spark.  Chaga was also used as a moxa hearth.  Plant material was placed on top of a burning ignited Chaga.  Together the Chaga and the burning plant created a moxabustion of healing aromatic substances. According to Paul Stamets the First Peoples used these fungi as a natural antibiotic, anti-inflammatory, and immunopotentiator as well as a practical fire-starter mushroom. (Stamets – Mycelium Running p. 258)

Finally I found a research paper published in the Journal of Ethnobiology in the summer of 1992 titled “Short communication – Use of Cinder Conk (Inonotus obliquus) by the Gitksan of Northwest British Columbia, Canada.

The author Leslie M. Johnson Gottesfeld writes:  “Cinder conk had two principal uses: for moxibustion treatment of swollen athritic joints, and as tinder or a slow match for making and transporting fire.”

Further she writes the Gitksan elder had two words for cinder conk: mii’hlw and tiiuxw. A Gitksan elder describes cinder conk and its medicinal use as follows:

“Mii’hlw-the black growth from the crack in the birch tree. Like yellow cotton inside. If you cut it off, use the yellow cotton stuff. Take a sliver like a match stick and burn it for pain in the joint.” According to the elder, after the sliver of cinder conk was burned near the skin on the affected joint, a special salve was then applied to the burn wounds. This treatment was reported to be effective in reducing the swelling, and presumably the discomfort, of the joint. ( Johnson Gottesfeld p. 154-55)

I love this much endangered fungi and birch that it grows upon.  And so do others who value it for its healing abilities.   Paul Stamets reports that wild harvesters for the nutraceutical industry are decimating the White and Yellow Birch populations of North America and Europe as they walk through the forest with machetes chopping the fungus off the tree and causing life-threatening damage to the trees.  The removal of the mother-chaga is also removing the spores from the forest (Stamets, October 2012).  The Chaga communities are becoming rarer as are the birch forests.

Stamets is trying to remedy the situation by teaching the nutraceutical industry and others to grow Chaga in growing houses on birch and other forest product chips.  He is also asking that the industry stop buying from foragers. Here is a link to a short video about conservation efforts to save the Chaga and the birch.

The trees are dying for a second reason:  Birch trees are especially sensitive to herbicides because they have a shallow root system. The herbicides are also decimating the beneficial fungi that live in symbiotic relationship to the birch.

UTILITY – CANOES AND BASKETRY

The White Birch is also called the Canoe Birch. In the Cascadian Bioregion (Pacific Northwest), some canoes were built as large as one

Canoe building - inland waters of Pacific NW

Canoe building – inland waters of Pacific NW

hundred feet long and seven feet wide, and could hold up to sixty people. Bark canoes are constructed of sapling frames covered in bark. Birch bark is very popular for both its durability and its relatively light weight. The birch bark is an outer covering spread over a frame (ribs and gunwales) made of flexible wood such as red or white Cedar. The canoe of the First Peoples was extraordinarily light and graceful. When new and dry, a 15-footer might weigh less than 40 pounds; the longer ones, made by some tribes, weighed about 75 pounds. One man could pick up a canoe and carry it, upside down and resting on his shoulders, over a long rough portage. For its size and weight, it had greater carrying capacity than almost anything that floats. A birch bark canoe could carry almost a ton of load and it is said that a 15-foot canoe was often used to transport an Indian Family with several children, plus all of their duffel and dogs. (Nature Bulletin)The Birch bark has been used to make baskets for thousands of years. There are myths about these baskets that have been retold to the basket-making societies. The birch basketry was used to make many helpful containers.  Panels of bark were also be fitted or sewn together to make cartons and boxes (a birchbark box is called a wiigwaasi-makak). The bark was also used to create a durable waterproof layer in the construction of sod-roofed houses.

Video – Cool things in nature:  Paper Birch Tree

REFERENCES

  • Birch Bark Canoes – Nature Bulletin No. 463-A   September 23, 1972
  • Forest Preserve District of Cook County viewed on the internet 1/20/2013 – http://www.newton.dep.anl.gov/natbltn/400-499/nb463.htm
  • Doctrine of Signatures – plant signatures – http://en.wikipedia.org/wiki/Doctrine_of_signatures viewed on the internet 1/22/2013
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Grieve, Mrs. M. (1931) Modern Herbal – The medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, fungi, shrubs and trees with all their modern scientific uses, 2 volumes, Harcourt, Brace company; reprinted by Dover Publications, NY in 1971.
  •  Johnson Gottesfeld , Leslie M. (1992) Short communication – Use of Cinder Conk (Inonotus obliquus) by the Gitksan of Northwest British Columbia, Canada. Journal of Ethnobiology, 12(1):153-156 Summer 1992
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London, pp.38
  • Pojar and MacKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia and Alaska, Lone Pine Publishing, Vancouver, BC
  • Stamets, Paul (2005) Mycelium Running- How Mushrooms can help save the world, Ten Speed Press, Berkeley, CA pgs 203-205.
  • Stamets, Paul “Chaga, the Clinker Fungus: This Mushroom Looks Scary But Can Benefit Health – October 25, 2012 – Huffington Post – http://www.huffingtonpost.com/paul-stamets/chaga-mushroom_b_1974571.html
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
Advertisements

Read Full Post »

“Beauty and seduction, I believe, is nature’s tool for survival, because we will protect what we fall in love with.”– Louie Schwartzberg, from The Hidden Beauty of Pollination

After I posted the first part of the “The flower in three parts” my current essay series, I received an email from someone who said “The Flower in three parts, sounds like a symphony”.  Yes, I said, that is the energy I have been trying to convey to others that botany, plants, native plants, flowers are all part of a symphony of life. Each part of the flower and its growth processes are important to the whole. The first part or movement was to turn your attention to this fantastic creation sitting at the end of a stem. I hoped to raise your curiosity.  I tried to flood your senses with wonder at the design and substance of flowers. It was a slow movement encumbered by way too much vocabulary but necessary if you are to truly meet the flower in all its wonder.

I have been drawing you into the allegro or opening sonata in order to capture your attention for the second movement the main allegro or scherzo: The pollination cycle or sex life of flowers. And finally in The Flower – part 3: “The Flower as Healer”, I will end with one of the strongest connections between humans and flowers: they heal us – the finale – we are flowers ourselves.  We are they and they are us. What we do to the flower, we do to ourselves. If we kill off the pollinators and clear-cut the plant kingdom, so goes all Eden, of which we are a part.

But now for Part 2: Pollination and The Sex Life of Flowers

The name of the second part “The sex life of Flowers” came from my research on flowers and their ways and means of pollination. While researching I

Sauromatum-guttatum-Voodoo Lilly

discovered a scientist named Bastiaan Jacob Dirk Meeuse.  He was a naturalist and botanist who was a professor at the University of Washington. He lived from 1916 to 1999.  Meeuse was a prolific researcher whose five decades of research on the exotic but stinky voodoo lily resulted in numerous contributions to science.  Dr. Meeuse was an authority on pollination, especially by insects and birds, and wrote the textbook ”The Story of Pollination” (1961).

In the 1980’s his research contributed to a well-known public television documentary called “Sexual Encounters of the Floral Kind” (1983). I have links to segments of the documentary in end of this essay. In 1984 Meeuse co-authored a book along with Sean Morris called “The Sex Life of Flowers”.

Meeuse was a botanist attracted by the exotic, he unlocked the secrets of the voodoo lily (Sauromatum guttatum) a relative of the corpse flower (Amorphophallus titanum). The voodoo lily has a very strong smell and generates much heat, up to 108 degrees when it ready for pollination. When it flowers, perhaps once a year, its fleshy purple spike emits waves of heat and an odor not unlike that of rotting meat. The chemicals released by the heat apparently helped to attract pollinators. (see picture).

Meeuse, along with his research team documented the flower cycle and the important relationship between pollinators and flowers. Meeuse and Morris found innumerable examples of mimicry in which the flower part has evolved to resemble a female bee. The male, trying unsuccessfully to mate with the flower, unwittingly collects and spreads the orchid’s pollen.

Here are a few facts about mimcry in pollination: When the male wasp tries to mate with the dummy female, he fails, but the orchid succeeds in getting pollen on the wasp. He flies away, only to be fooled again by another orchid pulling the same trick. In the process, the wasp transfers pollen from flower to flower. Plants that are farther away from each other are more likely to be distant relatives, so mimicry may reduce inbreeding. Posing as a sexual suitor may be a strategy that allows the geographic spread of plants over a wide area — generally, insects will travel further to find a mate than to find a meal.

Here is a link to the BBC documentary using some of Meeuse’s research:Wild Orchid and wasp mimicry – http://www.youtube.com/watch?v=-h8I3cqpgnA

Another important aspect of Meeuse’s research was to show that flowers develop MANY paths to pollination.  Flowers can be asexual (agamogenesis), hermaphrodites, only male or only female. And then there are the combinations. The only way to learn about a plant and its lovely flower is to sit with it, study it. Learn its entire life path. You just can’t make any broad statements about how flower reproduction takes place.

THE FERTILIZATION PATHWAY OF THE ZUCCINI SQUASH

Female and Male flowers of Zucchini Squash

Let’s look at the squash plant: A Zucchini squash plant has both male and female flowers.  Male flowers usually appear first and have a thin stem. Female flowers appear later and have a small, baby zucchini developing between the base of the flower and the vine. The male flower will usually open in the early morning, attract a certain type of early morning foraging insect, then can die away by the late afternoon.  The female flower will open later in the day and again attracts the same pollinating bee or insect and is fertilized by the pollen it is carrying.  If the small squash rots away then it has not been fertilized.  This can show a lack of garden pollinators. Hand pollination may be the only way to have a good crop of squash.

There is a very fragile dance going on here.  If there are no pollinator bees or other insects, our food will disappear. On most flowering plants there is only one short time frame in which a flower can be pollinated and if the conditions are just right or there are not enough pollinators available, no fertilization can happen. As in many processes in nature, timing is important. The female reproductive part of a flower is receptive to pollen only at certain times of the year. Creatures like insects and birds, which move from flower to flower in search of food, are a fast and often guaranteed way for plants to distribute their pollen.

Not all flowers need to be so cunning. Several angiosperm species including grasses bear inconspicuous blossoms – that use the wind for pollination.

Sometimes drought and disease can cause squash plants to only produce male flowers. Now this lack of fertilization can also be caused by severe weather change, or lack of fertilization in the soil types or pollution that causes mutations of plant or pollinator. Yes, the fragile dance is important to support.

PLANT CELLS AND THE MERISTEM-FLORAL

Floral-Meristem Physiology

For the last few months I have been leading you on a journey from the root to the stem to the branch and now on to the flower. All the while following the adventures of the meristem cell.  At the point of developing the flower, the meristem cell morphs into a meristem-floral cell and begins to produces cells that will become the structure of the flower.Plants produce 2 types of reproductive cells.  The first is the spore – found on such plants as ferns. The second is formed during sexual reproduction – a process where a population is divided into male and female members or distinct male and female structures on individual plants. The DNA of the plant, stored in these specialized flower cells will begin to build the structures and organelles that will become the flower. Flowers give rise to fruit and seeds.

BASIC SEXUAL PARTS OF A FLOWER

Flowers are short branches bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved (Capon 2010).  Both the male and the female reproductive parts of a plant are in the center of the flower. The male, pollen-producing part is called the anther, held aloft by a stalk called a filament. The entire male apparatus is called a stamen. Each pollen grain is unique to its species. The female reproductive part of a plant, the stigma, sits on top of a style, or stalk, which leads to an ovary at the base. The entire female plant mechanism is called a pistil. This is the illustration of a perfect flower having both female and male parts (some do).

Flowers have figured out a way to do the amazing things they do while taking care of the place that will take care of their offspring.  They are focused on having their genetic material here 10,000 years from now. Plants seduce pollinators with fragrance, hue, platform structure and a promise of sex with another of its own kind and ensure return visits with the promise of nectar.

Some flowers attract with scent, some with color. Most offer nectar as an enticement to visitors and as a way to ensure repeat visits. The chemical ecology of plants seeks not only to attract pollinators, but keep predators away. The complexity of floral odors mediate interactions between flowers and pollinators to guarantee reproductive success (Carde and Ring 2004).

Return business is particularly important for plants that encase many seeds in a single fruit—raspberries, for instance, or melons. A poorly pollinated raspberry will have many shrunken, dry drupelets. A melon blossom that doesn’t attract enough pollinators may produce a melon that is small, lopsided, and not very sweet.

A few varieties of plants have adapted the shape of their flowers to favor certain pollinators—tubular blossoms attract hummingbirds, for instance, but the nectar is often inaccessible to bees.

Lady Slipper Orchid

Other plants aren’t choosy. They’ll do business with birds and bees, and also with wasps, beetles, rodents, and even humans if that’s what it takes to move the pollen.Many flowers have a distinctive bull’s-eye color pattern or a throat of a different shade from the outside petals, to help insects and birds find the payload of pollen.

Plant structures, too, are designed to attract specific pollinating partners. The Queen Anne’s lace flower places its nectar right at the base of its tiny flowers where pollinators with a short proboscis (nectar-gathering appendage) such as honeybees, ants, wasps, flies, and beetles can reach it when they crawl on the flower. On the other hand, bumblebees, butterflies, and moths have long proboscises, which enable them to reach nectar in less accessible places. For example, the long shape and curve of the columbine flower complements the long tongue of a bee, butterfly, or hummingbird. By concealing the nectar deep within its trumpet-like blossoms, the columbine prevents animals who are not its pollination partners from taking the nectar and transferring any pollen.

WHY ARE HUMANS ATTRACTED TO FLOWERS?

Are humans also pollinators?  Michael Pollan, author of “Botany of Desire” writes in his 2002 article called “Border Whores” that some evolutionary psychologists have proposed an interesting answer. Their hypothesis goes like this: our brains developed under the pressure of natural selection to make us good foragers, which is how humans have spent 99 per cent of their time on Earth. The presence of flowers is a reliable predictor of future food. People who were drawn to flowers, and who, further, could distinguish among them, would be much more successful foragers than people who were blind to their significance. In time the moment of recognition—much like the quickening one feels whenever an object of desire is spotted in the landscape—would become pleasurable, and the signifying thing a thing of beauty.

Humans have danced with the flowers, written poetry, songs and spent endless hours nurturing their flower gardens.  The flower is etched into our psyche- we are changed by the floral scents, the structure and the nectar.  Humans have used flowers for food and medicine for thousands if not millions of years.  It has only been recently that we have become “plant and flower blind. It has only been in the last 100 years that we have begun to call certain flowers “weeds” and have conducted a chemical warfare on our beloved inspirers.

We humans have lost the ability to love the plants and their flowers. We cannot see the connection between life on earth and the need to pave over paradise. We need to grow and protect fertility.  In ensemble that is what ecosystems do, it creates more and more opportunity for life. We need to create conditions conducive to life the same way flowers and plants do. Ban all the dangerous chemicals and stop making war on the natural world.  We need to make peace with the flowers and the plants and all species. Namaste.

CASCADIAN NATIVE PLANTS THAT YOU SHOULD KNOW ABOUT

Oceanspray-Pacific Ninebark-Spirea

Matthew Shepherd of the Xerces Society reports that there are approximately 900 species of bees and approximately 200 species of butterflies in the Cascadian bioregion.  Native plants are the forage of choice by these pollinators. Some native plants attract a great many pollinators.  Cascading plants such as Pacific Ninebark (Physocarpus capitatus), White Spirea (Spiraeabetulifolia), and Ocean Spray (Holodiscus discolor) could be attracting hundreds of types of pollinators.  They often grow near wetlands, stream banks and moist forest lands.  They should be included in all landscaping projects where ever possible. These essential native plants will bring wildlife into any garden or natural area and guarantee the pollination for many flowers.

Another extremely important indigenous plant is the Willow. The Willow species are the basis of a vital food web for insects, birds, small mammals, larger animals; many soil organisms, bacteria and fungi. They are a very important habitat.  In particular Apis mellifera, (the honey bee) an insect belonging to the Hymenoptera Order use the early blooming Willow flowers (catkins) to survive long wet, cold springs. These insects are not damaging to the willow leaves or flowers, but are feeding on nectar and are helping to pollinate other early blooming plants (Aliner 1992).

The flowers of the Willow are inflorescences, taking the form of catkins, which develop in a familiar way, through the loss of the bud scale and the revelation of the silky hairs of the ‘Pussy Willow’. Eventually, however, the anthers surmount the filaments of the stamens and reveal a vivid display of pollen from pale yellow through gold to shades of red and purple depending on the species.

BEE COLONY COLLAPSE – A CANARY IN THE MIND SHAFT?

And finally I leave you with this little video called “The Beauty of Pollination”.  The speaker is director and producer Louie Schwartzberg.  He is presenting his work as part of the TED TALKS.  His deep concern for the present bee colony collapse that is decimating pollinators worldwide caused him to take all his film making skills and present a dire message to the world.  “The destruction of the bee is like a canary in the coal mine- once the bees are gone, then the flowers will disappear. Once the flowers are gone – then we will be gone.” You cannot truly love the flowers if you do not love the pollinators. Feast your eyes on this TED TALK on

The Hidden Beauty of Pollination:

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx: The whorl of sepals on the outside of a flower is referred to as the calyx.
  • Corolla: The whorl of petals is called the corolla.
  • Filament: The filament provides support for the anther in the stamen.
  • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
  • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
  • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
  • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Ailner, J. Edward (1992) The Tree Book Collins and Brown Ltd

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Carde, Ring T. and Millar, Jocelyn G:  Editors (2004) Advances in Insect Chemical Ecology – Cambridge University Press

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Meeuse, Bastiaan and Morris, Sean ( 1984) The Sex Life of Flowers Faber & Faber, London.

Meesue, B J D (1961) The Story of Pollination, Ronald Press, New York, NY

Meeuse, Bastiaan contributior – Documentary “Sexual Encounters of the Floral Kind”  part one: http://www.youtube.com/watch?v=1Qi7Pnth_t8

Pollan, Michael (2002) Border Whores, The Times London, March 9, 2002 Viewed on the internet May 18, 2012 http://michaelpollan.com/articles-archive/border-whores/

Shepherd, Matthew (2012) Xerces Society, Portland, Oregon http://www.xerces.org/ from a private email on 5-18-2012

Shepherd, Matthew, et al. Pacific Northwest Plants for Native Bees, Xerces Society, The invertebrate Conservation, viewed on the web on 5-12-2012 http://www.xerces.org/wp-content/uploads/2010/01/pacificnw-plants-for-bees-xerces3.pdf

Weiss, M. 1991. Floral colour changes as cues for pollinators. Nature 354:227-229.

WEB RESOURCES

Websites:

  • The sexual encounter of the floral kind. A 12 part series produced by public television and based on the research of Bastiaan Meeuse. Part 1 -Video on how flowers attract pollinators.  The male wasp and the flower.

http://www.youtube.com/watch?v=Hv4n85-SqxQ&feature=relmfu

  • North American Pollinator Protection Campaign – The best website available for resources on pollination, projects for classrooms, organizations affiliated with the Pollination Protection Campaign and more. Detailed lesson plans for in the classroom with teacher guides and student guides available for printing directly off website. Availability to order posters and materials for the classroom. http://www.nappc.org/
  • Xerces Society –The invertebrate Conservation organization located in Portland, Oregon. A very valuable organization and website. Lots of resources and education material.  – http://www.xerces.org/

Next time: The Flower:  Part 3 – The Flower as healer

Read Full Post »

PLANT BLINDNESS is a modern phenomenon whereby humans walk through their world each day and do not notice plants, nor do they know the name, the physiological, ethnobotanical, herbological or ecological connection between themselves and plants.”

Evolution of Plants

First off you should know I am not a scientist.  I am a naturalist.  My knowledge of plants comes from a personal relationship and constant observation and study.  I read everything I can find, including the works of various plant and biological scientists.  I forage for plants and use them as food, utility, medicine, and spiritual growth.  I am teaching from what I know  and what I am learning and offer what I know as one method of connecting with the plant “kindom”.  Yes, KINDOM.  Kindom is different from the hypothesis of Kingdom, which is hierarchical in organization.  Kindom, is different – the hypothesis put forward by the likes of plant specialist and scientist Dr. Alan (Mushroom) Kapuler – says that plants and animals and all species all need each other for survival.  There is not a higher group organization, rather all species interact and need each other in cooperation. Relationships between all species is not competitive but cooperative.

Here is a link to Kapuler’s web blog for further discussion of cooperative relationships between species:

http://mushroomsblog.blogspot.com/2005/01/descriptions-from-dr-kapulers-peace.html

WHY DO YOU NEED TO KNOW BOTANY?

Why do you need to know botany?  Because my goal is to allow each and every one of you to go into a natural area and identify every plant.  A goal that will only be reachable if you are well versed in Botany and plant identification.

Do you know that the connection between humans and the natural world is breaking down so fast that we now have a definition for humans that are disconnected from plants.  It is called “Plant Blindness”.  PLANT BLINDNESS is a modern phenomenon whereby humans walk through their world each day and do not notice plants, nor do they know the name, the physiological, ethnobotanical, herbological or ecological connection between themselves and plants.

It is my hope that you will learn all about plants on this Radical Botany blog and it will be taught in a way that you can easily absorb and apply to your life as a plant lover, naturalist or budding scientist.

So let us begin.

Botany is the study of plants.  It is a scientific process whereby plants are examined from the cellular to the ecological levels.  A scientist who studies Botany or plants are called a botanist.  A plant lover can also be called a naturalist, a gardener, a horticulturist, or one of my favorite “a tree hugger”.  Unabashedly I am a tree hugger and a naturalist.

WHERE DO PLANTS COME FROM?

According to the theories of science,  hundreds of millions of years ago, tiny specks of protoplasm appeared on earth in the ancient seas,  and were the beginning of all our plants and animals.  The protoplasm specks – a one cell organism that became plants developed thick walls and developed the green coloring matter as chlorophyll which enabled them to make food from substances in the air, water and soil.  Slowly over time the plants were able to leave water and adapt to land growing and producing multi-cell organisms.

In the past botanists regarded plant as meaning a multicellular, eukaryotic organism that generally does not have sensory organs or voluntary motion and has, when complete, a root, stem, and leaves.  However this is a better description of vascular plants.  Some plants have no roots, stems or leaves.   And, plant-like organisms such as kelp are actually from the order Laminariales.

Let me go out on a limb here (pun intended) and make this statement about plants: they are alive versus being parasitic and not alive.

A second characteristic of a plant it is that it refers to any organism that is photoautotrophic—produces its own food from raw inorganic materials and sunlight.  However, Blue-green algae and certain bacteria and cynophytes are photoautotrophic and are not classified as plants.

The same is true for mushrooms.  A mushroom- the fruiting body of a fungus (Kindom Fungi)  is not considered a plant. It is closer to the animal kingdom.  A mushroom is not photoautotrophic at all, but saprophytic for the most part however, some fungi and bacteria is parasitic.

Traditionally, all living things were divided into five kingdoms:

MoneraProtistaFungiPlantaeAnimalia

I know, I know – scientists are now trying to say there are only three kingdoms: ArchaeaEubacteriaEukaryota and these kingdoms reflect whether the object of study has a cell wall or not.  I prefer to work with the five kingdom (or Kindom) system because it allows us to generally differentiate between major groups of living organisms.

So let us say that plants are part of the kindom Plantae.  Plants include familiar organisms such as flowering plants, conifers, ferns, mosses, and green algae, but do not include seaweeds like kelp, nor fungi and bacteria.

Plants can be grouped as follows:

First informal group – GREEN ALGAE

Green algae Division name: Chlorophyta and Charophyta of which there are between 3800 and 4300 species

Second Informal Group – BROYPHYTES – land plants that do not have true vascular tissue and are therefore called non-vascular plants.

Bryophytes : Marchantiophyta also called liverworts of which there are between 6,000 and 8,000 species.

BryophytesAnthocerotophyta also called hornworts of which there are between 100 to 200 species

BryophytesBryophyta also called mosses of which there are about 12,000 species

Third Informal Group of plants -PTERIDOPHYES- The pteridophytes are vascular plants (plants with xylem and phloem) that produce neither flowers nor seeds.

PteridophytesLycopodiophyta also called Club Mosses of which there are approximately 1,200 species

Pteridophytes: Pteridophyta also called  ferns, whisk ferns and horsetails of which there are approximately 11,000 species.

Fourth Informal Group of Plants: SEED PLANTS

Seed plants: Cycadophyta also known as cycads of which there are 160 known species

Seed Plants: Ginkgophyta also known as ginkgo of which there is one known species

Seed Plants: Pinophyta also known as conifers of which there are 630 known species

Seed Plants: Gnetophyta  (woody plants) also known as gnetophytes of which there are approximately 70 known species.

Seed Plants: Magnoliophyta also known as flowering plants of which there are approximately 258,650 species

My focus for Radical Botany will be worts, clubs, mosses, ginko, flowering plants and conifers as well as other trees found in the Cascadian bio-region: An area that includes British Columbia, Washington State, Oregon State, and Northern  California.

Next time: Cell structure of Plant Groups: flowering plants and conifers

Read Full Post »

 

Wapato

Wapato – Sagittarian Latifolia ( Broadleaf Arrowhead, tule potato, duck potato, arrowleaf).

This story was told to me. I have never seen Wapato. I search for it often to release it back into the wild. This story was told to me by others who love the plants.

In the land whose borders stretched from the area we call British Columbia (Haida, Tlingit, Lleitsui Nuuchah Nuith, and Salish land) to the deep forests and coast of Northern California and Mt Shasta (Tshastl) Wapato grew and kept watch over the people. This was the time before the change.

Once, before the occupation and colonization of the first peoples of Cascadia. Before the times when women and children and the infirmed were taken from the Cow Creek, Umpqua, Siletz, Kalapuya and Chinook. Before the people were lined up and marched on the Trail of Tears to Grand Ronde. Before the strong youth and warriors of those tribe escaped across the Cascades to join the resistance leaders such as Bin, Sister, and Sami of the Carrier Athabasca, Joseph of the Nez Pierce whose real name was In-mutt-too-yah-lat-lat (Thunder coming up over the land from water). Before the brave ones crossed the deep snows of the Cascades to join the Paiute Leader Wovoka and the Ghost Dancers and the Modoc resistance leader Captain Jack – Keiutpoos.

Before that time the Wapato lived in great green rivers along the slow moving streams and the ponds. It was the glory food of the people.

Wapato grew so prolifically, that it was harvested like crops. First peoples apparently claimed patches that guaranteed rights of harvest. Families or tribes made claims on particular patches of the plant. While Wapato grows all over the North American continent (and the world), it probably came to prominence in the northwest due to mild winters and great abundance of places to grow. Wapato was gathered in October and November when most other ponds in the country are frozen over or too cold for gathering.

Wapato loved the shallow ponds, swamps, slow moving streams, and the margins of quiet lakes. It requires a rich muck that is submerged in water for most or all of the year. In good conditions, Wapato can grow in huge abundance.

According to Pojar and McKinnon a Chinook myth describes Wapato as “the food before Salmon came to the Columbia”. The women of the First People tribes would wade in water up to their chests or even necks, while using their feet, to release tubers from their stems. The tubers floated to the water’s surface, were collected, and tossed into a special canoe.

Wapato was eaten raw (although somewhat bitter) or cooked. Wapato tubers were prepared for eating by boiling, or by baking in hot ashes or in underground pits, after which they could be eaten or dried for long-term storage or trading. The taste of the Wapato is much like that of the potato.

The tuber was an energy food much like potatoes. Only this plant also yielded some iron, calcium, zinc and magnesium and other minerals. It was an outstanding food when there was a shortage of protein. It is very high in carbohydrates. This allowed the people who harvested Wapato to survive long winters with little other food. The tubers stored well and were much sought after as a trade food item.

The Wapato could be pounded into flour that was stored and made into cakes in the winter time. Or it was added to Pemmican or fruit leather.

But during the occupation wars, in order to beat down the people, the great twisting rivers of Wapato were dug up by the occupiers and piled along the stream edges and burned. This was done as part of the genocide against the First Peoples. It was thought that if the plant was destroyed in the wild, the people would be dependent upon the occupiers for food and would not run away.

The women tried to hide the tubers in their belongings in hopes of replanting them at the place of internment. Some Wapato was smuggled to Grand Ronde and into the Coast range. Some were released along the Luckimute and other local rivers and streams.

There are few reserves of these plants.

One is found at the Ridgefield Wildlife Reserve at Ridgefield, Washington. Great flocks of trumpeter swans migrate here each winter.  The Wapato is excellent food for these beautiful birds.  The area is closed to people, but there is an observation area nearby. 

Wapato is an herbaceous wetland plant. The leaves and flower stalk rise above the water. The leaves are arrow-shaped (sagittate). Leaf stems attach directly to the base of the plant like celery. The base is partially submerged in the muck, giving rise to the roots and rhizomes below.

The plants grow in long bands that snake around the curves of ponds, lakes and slow moving streams. Wapato’s white, 3-petaled flowers bloom on a spike from midsummer through early autumn. The flowering stalk is separate from the leaves but rises about as high off the water. Later in summer, small green balls form in place of the flowers. These turn brown in fall and break apart to disperse tiny, flat, winged, floating seeds.

There is a growing movement to replant the Wapato in Cascadia’s waterways. The plant is food not only for humans but for beavers, otters, muskrats, ducks and other animals that frequent water ways.

To learn more about Wapato

 http://en.wikipedia.org/wiki/Broadleaf_arrowhead

Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

 Thrush, Coll-Peter – The Lushootseed Peoples of Puget Sound Country – Essay by Coll-Peter Thrush viewed on the internet 1/1/2011  http://content.lib.washington.edu/aipnw/thrush.html#circling  University of Washington – Digital Collections

Read Full Post »

Click for larger image

I use a two step method of identifying plants.  I first use a profile sheet that allows me to check off key parts of a particular plant, make a sketch and collect plant samples. Then I “key” out the plant data I have collected. This allows me to indentify just about any plant I find in the wilds or in the city.

 I carry the profile sheets in my back pack when I go out in the woods or nature.  I take my color pencils with me and my profile sheet has a place on it where I draw the plant I have found.   I will put a link to an example of a good plant profile sheet you can use.

Once I have collected information about the plant I can begin to “key” the plant.

The key was actually devised over many years and categorizes the plant parts into plant family, genus and species.  You can view the key as a series of questions you answer that will allow you to get closer and closer to identifying a plant.

Pojar and MacKinnon have a great key at the beginning of each section in their book.  The Species are grouped as follows: Trees,  Shrubs, Wildflowers, Aquatics, Oddballs, Graminoids, Ferns and Allies, Mosses and Liverworts, and Lichens.

HOW TO BECOME AN EXPERT AT INDENTIFYING ANY PLANT

STEP ONE: Learn the basic parts of a plant.  Here is a link to a good source online that teaches you about the 19 basic botanical parts.

STEP TWO:  fill out a profile sheet on the plant you are trying to identify. Here is a sample of an online profile sheet

STEP THREE:  Key out the plant.  It is important to use a plant book that is designed to cover plants from your region of the world and includes plant keys.

 You choose family first.  Look at the plant and decide where it might fit.  It is a tree, a shrub, a wildflower, grass or sedge? Choose one.  Let’s say that we have come upon a tree.  Look at it and use a profile sheet to gather some information about this tree.

Here are the questions that you may want to answer.

Stem and Leaves

Stem where leaf is attached:  stipules?   no stipules?

Leaf blade  smooth edges?    toothed edges? 

Leaf petiole   long?    normal?   absent?

Leaf type (look for buds) ”  simple? ”  compound?

Arrangement of leaves (at nodes)  alternate?  opposite?  whorled?  spiral?

Needles?  Are they flat?  Round?  In groups of 2 or 5?  Other?

Next: draw a picture of the tree, its shape over all.  What does the bark look like?  Look closely at the leaves or needles.  Does the tree have a cone or flower? Take a sample.  Put it in a collection bag to study.

Now you have a profile sheet and can use a key to study what you have collected.

In the Pojar and MacKinnon book you will find small pictures that will allow you to identify the tree type.  Then you will be asked if the tree has leaves or needles and depending on what you choose to answer, you will progress to deeper information.  The key uses deduction.  Here is an example.  Let say I am trying to identify that tree again.  I am pretty sure it is a pine tree of some sort.  I look at the key for trees.

1a.  Leaves needle-like or scale- like evergreen, seeds usually in cones, not enclosed in a fruit (like a conifer).

2a – Leaves scale-like concealing the twigs                         Or

2b – Leaves needle-like, not concealing the twigs

 I CHOOSE 2b.

Under 2b I find other choices:

Needles in clusters?

Needles in clusters of 5?…..then it is a Pinus monticola

Needles in cluster of 2?……then it is a Pinus contoria

 My tree has needles in clusters of 5 –  I find that the tree is a Pinus monticola or a Western White Pine.

Pretty easy!   The trick is to have a good book that has a well prepared key.  It gets far more complex when you start trying to identify plants that flower or grasses and sedges.

If you really want to learn plant profiling and keying…pick up a copy of Elpel’s “Botany in a Day”. Thomas Elpel uses the patterns method of plant identification.  He teaches plant parts for profiling. He has keys for all the plant species and families. And, he teaches you how to understand important patterns found in the plant kingdoms.

Elpel also teaches about the hierarchy of the plant kingdom, from top to bottom.  Here it is for review:

Division (phyla)

            Class

                        Subclass

                                    Order

                                                Family

                                                            Genus

                                                                        Species

 The last three divisions are what most plant identification books and plant keys focus on. Profiling a flower is much harder than profiling a tree.  There is just so much more to know.  Basically flowering plants can be categorized into two classes:  Dicots and Monocots.

 What division of the plant kingdom does your flowering plant belong to?  Is your plant a monocot or a dicot?  Is your dicot plant a member of the Aster family?  How many petals does it have? These are just a few questions that help you profile your plant. Once you have answered these questions you will be able to easily find the right key for the plant.

 Here is some basic information about flowering plants.

 Dicots:  (two seed leaves, netted veins, usually tap rooted, usually complex branching, floral parts mostly in 4’s and 5’s.)there are simple flowers and complex flowers.
Monocots: (one seed leaf, parallel veins in the leaves, horizontal rootstalks, usually simple branching, floral parts mostly in 3’s)

 Flower types include simple and complex classes.  These classes include Buttercup, Rose, Gentian and Aster, Arrowhead, Lily, and Orchid.

 “Botany in a Day” will help you identify the correct family of a plant.  It is much easier to identify the proper genus or species of a plant after you have accurately identified the proper family. Use Botany in a Day to find the correct family, then you can use color picture books to help narrow down choices.  

 Elpel’s book has pictures and explanations of these flower types. He also has included profile pages specifically for flowers. He also covers the evolution of plants.   Visually viewing the actual plant is essential to learning about it.  And the viewing needs to include deep study of each part of the plant.   Once you understand the patterns of each plant family you will easily be able to identify and “key” the plant. 

For instance: the pattern of the Mustard family:  4 petals and 6 stamens – 4 tall 2 short.

 The pattern of the Mint family is that it has square stalks and opposite leaves, often aromatic.

 There are plenty of resources on the internet to help you identify plants also.  Here is a link to a plant guide put together by the US Department of agriculture.  It is plant guide for the Common Snowberry – http://plants.usda.gov/plantguide/pdf/cs_syal.pdf 

Create a study group or skillshare to learn about plants.

 One thing you might consider doing is creating a study group or skillshare group using “Botany in a Day” and other books to learn together.  You might have people in your group who know a few plants and be willing to share with you.

 One last thing: storytelling.  I need storytelling to remember things.  I have a Celtic mind and soul.  Because I love storytelling I am fascinated with ethnobotany.  Ethnobotany discusses how the plant was used by indigenous peoples.  Pojar and Mackinnon’s book includes the ethnobotany of the each plant.  I have also included two great references with this essay.  Erna Gunther and Nancy Turner have great books about the ethnobotany of plants in the Cascadian bioregion.  

I wish to acknowledge my plant teachers who taught me to be able to identify plants through profiling and keying. My favorite plant identification teachers are Thomas J. Elpel who wrote” Botany in a Day”, and Jim Pojar and Andy MacKinnon who edited” Plants of the Pacific Northwest Coast”.

Hope this explanation helps you get started on how to identify plants.  Until next time – see you in the deep woods!

 Next time: Wapato – the liberation plant

 References

 Gunther, Erna (1945) Ethnobotany of Western Washington, The Knowledge and Use of Indigenous Plants by Native Americans, University of Washington Press, Seattle and London.

Elpel, Thomas J. (1996) Botany in a Day:  The Patterns Method of Plant Identification, Herbal Field Guide to Plant Families, 4th Ed (2004) HOPS press LLC, Pony, Montana

Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Turner, Nancy J. (1979) Plants in British Columbia Indian Technology, British Columbia Provincial Museum, Victoria, British Columbia, Canada

Online resources

Thomas Elpel’s website: http://www.wildflowers-and-weeds.com/

Website of Pojar and Mackinnon’s book “Plants of the Pacific Northwest Coast” http://www.lonepinepublishing.com/cat/9781551055305

US department of agriculture plant guide:  http://plants.usda.gov/plantguide/pdf/cs_syal.pdf

Read Full Post »

In 2011 I will be sharing with you why you need to respect and bring native plants into your life.  I will be doing this in a pragmatic way. First I am going to take up the post-a-week challenge made by WordPress and will be updating my blog weekly. 

 I will share with you why it is so imperative that humans stop destroying their natural environment.  I will share with you the science behind why native plants are so important.  I will teach you to identify native plants so that you can start visiting them in the wild places and start bringing them back into your health and wellness regimes, your yards, your cities and biomes.

I will be listing more activities found in Cascadia (the area from British Columbia to Northern California) that will help you connect with the both native plants and those who can teach you what you need to know.

You can help me.

Tell me what is going on in your area of the world that inspires others to protect native plants.  Share inspired comments to this website (skillshare).  Tell others about this website and this project.

I will be learning more about the technology offered by WordPress and available on this website.  I promise to learn how to tweet, digg, RSS, etc. I know I can do it, I know I can do it…

I will be publishing my book as an e-book during 2011.  It will include illustrations and watercolors that I have completed of native plants, plant identification charts, maps, and other useful information.  This book has 18 chapters.  Here is preview of the chapters.

Table of Contents

Introduction: finding our way back, reconnecting with the plant world. 1

Chapter 1. Plant Community, human community (White Oak) 5

Chapter 2. Learning the lay of the land (Oregon Grape) 11

Chapter 3. How to identify and “key” native plants (Miner’s lettuce) 19

Chapter 4. Building shelters from plants (Willow) 27

Chapter 5. Growing your own fibers: Grasses, sedges, tules and fiber plants (Cat-tail) 29

Chapter 6. Seeds and wild plants. What is valuable?. 31

Chapter 7. The great harvest (Wapato) 33

Chapter 8. Digging in the dirt- exploring earthworms and mycelium.. 35

Chapter 9. Using native plants as medicine (Pacific Ninebarks) 37

Chapter 10. Spring plants in Cascadia (Nettles and the potherb) 39

Chapter 11. Stalking the wild plant – Tools, geography, maps (Horsetail) 41

Chapter 12. Fermenting the bounty (Red and Blue Elderberry) 43

Chapter 13. Bringing the native plant and pollinators home. 45

Chapter 14. Twenty important native plants you need to know.. 46

Chapter 15.Place where the spirit dwells- First Nations- the ethnobotany of native plants  47

Chapter 16. Generational Injustice (St. John’s Wort) 49

Chapter 17. Bringing Native plants back into our mechanized world (Cats Claw) 53

Chapter 18.  Resources and Tools: books, gear, online resources. 57

WordPress will not allow me to publish the ebook or link to the ebook on this website so I am looking for other avenues to let you know how to support the Radical Botany project.  I will find a way to let others purchase the book and support this project to educate others about native plants .  I will continue to update this blog weekly and continue to teach what I know and what I am learning. 

  I am looking into starting a non-profit education project.  I hope to locate to a more rural area in Cascadia where I can have a greenhouse and native plant nursery and school.  I want to live next to the forest.

So those are my resolutions for 2011.  I hope that you will contribute in a positive way.

See you in the deep woods – Let us begin…

Happy New Year! 

Read Full Post »

Mistletoe and the Garry Oak Tree

At this time of the year in many western and European countries you will see mistletoe put up as a holiday decoration.  Is it a native plant in the Cascadian bioregion?  Yes.  It is called a hemi-parasitic plant.  That is it lives in a symbiotic relationship with other plants and is also considered a parasite to trees.

There are many myths about the power of mistletoe to bring humans together.  Thus it is the custom of many to place mistletoe above a door and encouraging people to kiss.  In one custom men have the privilege of kissing a woman under it- plucking each time a berry from the stem.  When all the berries are all plucked the privilege ceases.

But mistletoe has other important uses to the forest ecosystem.

There are actually three types of mistletoe located in our bioregion. Two live in conifers.  The Douglas dwarf mistletoe (Arceuthobium douglasii) lives in the Douglas fir.  And the Western dwarf mistletoe (arceuthobium campylopodum) is most often found in the Western Hemlock but can also be found on pine, juniper, and other conifer trees.  And last, the most popular type of mistletoe is found in the Garry or White Oak located in oak savannahs throughout the region.

Garry Oak mistletoe (Phoradendro flavescens) is the type popular during our Solstice/Christmas season.  It was long thought to be purely parasitic and might even kill the host tree.  Now, after years of study the plant is actually known to be part of a unique ecosystem that encouraged oak tree propagation.

For instance the name Mistletoe is attributed to old German and old English language and means twig dung.  Because birds eat the seeds and the seeds are deposited in their dung and fertilized. The same birds eat other cone seeds, and acorn’s and carries them to other sites to be planted and fertilized.   The acorn of the Oak is picked up by squirrels that also come to the oak for the berries of the mistletoe.

The mistletoe found in conifers is very unique.  It causes the tree to produced odd shaped branches that grow closely together in a thatch.  This is called a “witches broom”. This type of mistletoe is often overlooked because it occurs high up in the conifer.  This thatch makes a wonderful nesting site for some very vulnerable birds in our region such as the Northern Spotted Owl and the Marbled Murrelet.  A wide range of animals depend on mistletoe for food, consuming leaves, young shoots, transferring pollen between plants and dispersing it’s seeds.

Medicinal aspects of Mistletoe

First peoples and people who live in Western and Northern Europe used Mistletoe to cure aliments of the circulatory and respiratory system.  A tincture or infusion was prepared and the solution was used sparingly.  The overuse of the plant parts can cause gastric problems that can lead to diarrhea or worse. It is not uncommon for a teacher to tell children that the berries are poisonous.

According to the book “A Modern Herbal” by Mrs. M Grieve, mistletoe was traditionally used as an effective treatment for convulsive disorders such as epilepsy. Mistletoe has also been used as an experimental treatment for cancer, though scientific evidence of its effectiveness as a cancer cure is limited. Medicinal forms of mistletoe include teas, tinctures and injections. Mistletoe extracts that are depleted of lectins, one of the toxins in mistletoe, are less likely to produce adverse reactions.

IS Mistletoe poisonous?

Mistletoe can make cats and dogs and children quite ill if ingested in high enough doses. It is best to keep mistletoe up high while decorating.  Young children may think the berries are eatable.  But it is like most powerful healing plants, a very useful plant if used correctly.

In modern times mistletoe has been studied to see if it can treat cancer. It was found to stimulate the immune system increasing the amount of white cells that attack the malignant cells. Much more investigation needs to be done to understand how this happens.  And a homeopathic does of mistletoe was formulated by Rudolph Steiner as he believed that mistletoe diluted (homeopathic) could treat a faltering of the body’s spiritual defenses.    Again it is best to contact a qualified herbalist, naturopath or physician. 

For more about native plants used in celebrations check out this excellent article on Wikipedia called “Festive Ecology

Read Full Post »

%d bloggers like this: