Feeds:
Posts
Comments

Posts Tagged ‘Cascadian bioregion healing plants’

The Leaf

“Oh leaf, you must surely have found strength to force the branch to burst open so that you could emerge. What did you do to become free from the prison? Speak, Speak…” -Rumi

A leaf is like a flag unfurling.  The emerging leaf from the stem announces the beginning of the metamorphosis from stem to flower, from winter to spring.  It is the opening up of the new leaf that announces new life. Humans and animals begin to notice a plant once the leaf emerges.  It is our food and it is our hope for spring and the first harvest. Leaves provide brilliance in the spring and shade in the summer. They are perfect food containers and provide food for many species on the earth.  Later when the seasons turn to winter, the leaves that have fallen on the ground provide protection and fertilizer to the creatures of the forest and other environments.  Leaves provide more than half the human food needs.  Another large portion of leaves are used for the feeding of livestock.  Without leaves, humans would starve or die from malnutrition.

THE PRIMORDIAL LEAF

When last I wrote I told you about the mersistem cells and the apical cap or bud that is growing up toward the light. 

It is also, at precise intervals, creating appendages that will become branches and possibly leaves. The apical bud is involved in making the stem growing longer, initiates the orderly arrangements of leaves on the stem, and makes provision for the eventual development of branches.  This early period of leaf production in the mersistem bud is called leaf primordia. A primordium, the nascent leaf, forms at the least crowded part of the shoot meristem. The leaf cells fold over the meristem bud to protect it from sun and other weather. At just the right time, when the days are longer and the air temperature is warmer, the leaf begins to grow larger and then finally opens up.  At the base of the leaf primordia a bulge appears and it is called “axillary bud primordium” and is the beginning of a branch.   A branch forms at the axil or angle between the leaf and the stem.

Now the meristem cells are following the DNA blueprint of this plant whether it will be at maturity a tree or a sunflower.  And as the meristem cells formulate the stem it is remembering the specific design and pattern of this plant. It “remembers” at what interval to place the leaf nodes or the branch nodes.  The branch node of course can grow leaves as it extends its growth.

The cellular structure of the leaf is all about meristem cells, stomata, glucose storage and photosynthesis.   In review, the stomata’s main function is to allow gases such as carbon dioxide, water vapor and oxygen to move rapidly into and out of the leaf.  Stomata are found on all above-ground parts of the plant including the petals of flowers, petioles, soft herbaceous stems and leaves.

Leaf Stomata

Stomata are the main “food manufacturing” organs of the leaves. They make food from carbon dioxide and water in the presence of light during a process called photosynthesis. As stomata open in the presence of light, carbon dioxide will diffuse into the leaf as it is converted to sugars through photosynthesis inside the leaf. At the same time, water vapor will exit the leaf along a diffusive gradient through the stomata to the surrounding atmosphere through the process of transpiration.

Another very interesting thing happens at the point that the meristem cells decide to create a leaf.  The cells start to create new chemicals.  One such chemical is chlorophyll.  And, cell tissue that is filled will chlorophyll will turn green. Leaves receive their green color during the process of trying to absorb energy from the sun. The sunlight strikes the leaves, which contain chlorophyll, and the chlorophyll reacts by emitting the green color. Likewise in the autumn some plant leaves turn color because as the days shorten and leaves absorb less light, the leaves prepare for autumn by stopping the food-making process. Consequently, the production of chlorophyll drops off, turning some leaves orange and yellow in the fall.

Colors, like yellow and orange, are in leaves all summer, but the powerful green chlorophyll overwhelms them. Once the cold shorten days come on in the fall, chlorophyll disappears and the leaf’s other colors shine through.

THE PATTERN IS THE KEY

Each plant has a pattern for growing stems, branches and leaves.

  • A leaf is connected to the stem by a structure called the petiole.

▫         The base of the stem where the petiole connects is called the node

▫         Where the petiole connects to the leaf is called the axil

▫         The axil is where we happen to find buds, clusters, and emerging leaves.

Leaves appear on the stem in a set pattern.  Learning the leaf patterns will help you identify the plant and help you use plant keys

Leaf Morphology: Shape and arrangement, margin and venation

Studying the different shapes and designs of the leaf will also help you to identify a plant.  Each plant has a pattern of growth.  Identifying the overall shape of the leaf, the outer edge of the leaf (margin) and the pattern of leaf veins will help you to identify or key the plant type. Developing a keen eye for observation will help.  I actually draw the leaf so I can more fully study it.

Overall Shape of the leaf

Many plants have adapted leaf shapes that help water drip off the plant to avoid too much moisture, which might make bacteria and fungus grow.  The leaf shape and arrangement on the stem will funnel water to the root. The leaf shape may provide a platform to collect the sun’s rays or keep wind from blowing the plant apart.

Arrangement of the leaf on the stem

Leaf arrangement types on the stem

In botany the word “phyllotaxis” is a word used to describe the study of the arrangement of the leaf on a plant stem. .  There are four primary leaf arrangements:  Alternate, opposite, whorled and rosulate. (Please see illustration).

  • Opposite      leaves are positioned across the stem      from each other, with two leaves at each node.
  • Alternate (spiral) leaves are arranged in alternate steps along      the stem, with only one leaf at each node.
    Whorled leaves are arranged in circles along the stem.
    Rosulate leaves are arranged in a rosette around a stem with      extremely short nodes.

Leaf Margins

Leaf Morphology Chart

The leaf margin is the outer edge of a leaf. There are many different margins.  Here is a list of margin types listed on Wikipedia .  Learning these types of margins will help you to key a plant.  (Please see illustration on left. CLICK TO ENLARGE -also found on Wikipedia -thank you Wikipedia!).

  • ciliate: fringed with hairs
  • crenate: wavy-toothed; dentate with rounded teeth, such as Fagus (beech)
  • crenulate finely or shallowly crenate
  • dentate: toothed, such as Castanea(chestnut)
    • coarse-toothed: with large teeth
    • glandular  toothed:  with teeth that bear glands.
  • denticulate: finely toothed
  • doubly toothed: each tooth  bearing smaller teeth, such as Ulmus (elm)
  • entire: even; with a smooth margin; without toothing
  • lobate: indented, with the indentations not reaching to the center, such as many Quercus(oaks)
  • palmately lobed:  indented with the indentations reaching to the center, such as Humulus (hop).
  • serrate: saw-toothed  with asymmetrical teeth pointing forward, such as Urtica (nettle)
  • serrulate: finely serrate
  • sinuate: with deep, wave-like indentations; coarsely crenate, such as many Rumex (docks)
  • spiny or pungent: with stiff, sharp points, such as some Ilex (hollies) and Cirsium (thistles).

Design of the veins found on the leaf

There are two subtypes of venation, namely, craspedodromous, where the major veins stretch up to the margin of the leaf, and camptodromous, when major veins extend close to the margin, but bend before they intersect with the margin.

  • Feather-veined, reticulate arise from a single mid-vein and subdivide into veinlets. These, in turn, form a complicated network. This type of venation is typical for (but by no means limited to) dicotyledons.
  • Palmate-netted or fan-veined; several main veins diverge from near the leaf base where the petiole attaches, and radiate toward the edge of the leaf, e.g. most Acer (maples).
  • Parallel-veined      or parallel-ribbed– veins run parallel for the length of the leaf, from the      base to the apex. Commissural veins (small veins) connect the major      parallel veins. Typical for most monocotyledons, such as grasses.
  • Dichotomous – There are no      dominant bundles, with the veins forking regularly by pairs; found in Ginkgo and some pteridophytes.

For a full discourse on every leaf shape possible check out Wikipedia http://en.wikipedia.org/wiki/Leaf_shape

LEAVES FOR FOOD AND MEDICINE

For as long as humans have been on the earth, the leaves of plants have been used for food, medicine, shelter and utility.  Green has been a sacred color to those cultures who understood the important relationship between humans and plants. Leaves were used in ceremony, clothing and decoration.

Children learned rhymes and axioms that taught them to identify the helpful and not so helpful plants around them. Here are just a few:

  • The leaves of three, Leave it be. The leaves of four have some more. (a song to teach a child to identify Poison oak or Ivy)
  • Hairy vine? No friend of mine!
  • Berries white, danger in sight!
  • Red leaflets in spring are a dangerous thing.
  • Side leaflets like mittens will itch like the dickens!
  • Berries of red will soon be dead!
  • Berries of black, caution for that. Or ”Berries of black, ask about that.”

Nutrition of plant leaves

Humans have been able to survive the long months to the first harvest by storing food and by harvesting early spring plants.  Roots are important through the winter months. But the early green leaves of Stinging Nettles (Urtica dioica), Miners lettuce (Claytonia perfoliata), Dock (Rumex patientia L,) Dandelion (Taraxacum) and hundreds of other species have allowed humans to survive until the next great harvest.

Nutritional – Medicinal

There were a number of plants that were known by the First Peoples of Cascadia that helped humans survive starvation and nutritional imbalance. Known by Europeans as “Spring tonic” plants, these plants with their new shoots are full of nutrients that are helpful to our well being. For instance- Stinging Nettle (Urtica dioica) when picked young, can be steamed and eaten in February and March. This plant has been known to alleviate muscle pain, depression and tiredness. It truly is a spring tonic. Stinging Nettle is often found in semi-wet well drained areas.

Stinging Nettle (Urtica dioica) and the Spring Potherb

Stinging Nettle (Urtica diocia)

Stinging Nettle is a herbaceous perennial flowering plant, native to Europe, Asia, northern Africa, and North America,and is the best-known member of the nettle genus Urtica.  It was a survival plant for First Peoples and others who moved here to live. It is a key ingredient in the Spring Potherb. This is a soup where early plants are steamed and cooked into a broth and drunk to get one’s body ready for spring and summer. It wakes up the body, mind and spirit. The greens are also consumed.  The greens contain vitamin C, iron and many minerals.

Recipe for the Spring Potherb

Bring a big pot of water to boil, turn down the heat.  Place plants into the water and turn off heat.  Season to taste.

Stinging Nettle
Chickweed
Clover
Dandelion leaf and root
Great Burdock
Lamb’s Quarters

The fresh leaves of Stinging Nettle contain vitamins A, C, D, E, F, K, P, and b-complexesas well as thiamin, riboflavin, niacin, and vitamin B-6, all of which were found in high levels, and act as antioxidants. The leaves are also noted for their particularly high content of the metals selenium, zinc, iron, and magnesium. They contain boron, sodium, iodine, chromium, copper, and sulfur.

Stinging Nettle is a versatile plant. The plant is not only eaten, but as the plant matures the fibers of the plant were used for making many useful things. The fibers have been used for thousands of years for shoes, hats, fabric for clothes, fishing line, and was woven into twine and rope. The use of Nettle fiber worldwide is the similar to the use of Hemp or Flax. Used to weave fabric of all kinds, it is has also been used to press into paper. The nettle fiber is usually mixed with other paper-making plants as it does not possess the gluey substance needed to allow the paper fabric to hold together.

The Sting of the nettle is said to be a cure for Arthritis and other diseases of muscles, joints, and some organ tissues.

The antidote for being stung by this plant is the juice found inside the stem or Dock (Rumex patientia) which usually grows nearby. A Plantain (plantago macrocarpa) or (plantago lanceolata) poultice can also be used as antidote for the sting.
NEVER COLLECT THESE PLANTS ALONG POLLUTED WATERWAYS, ROADS OR INDUSTRIAL AREAS. This plant, as well as all plants, is adapted to uptake dangerous heavy metals (bio-remedial). Always harvest in safe areas.

“Nature will bear the closest inspection. She invites us to lay our eye level with her smallest leaf, and take an insect view of its plain.” – Henry David Thoreau

Vocabulary

Axillary bud primordium – An immature axillary bud. An embryonic side shoot. A point on a stem, at the node, and between the stem and leaf, where a new shoot can develop. Growth is usually inhibited at these buds.

Leaf primordia – A lateral outgrowth from the apical meristem that develops into a leaf

Petiole – The stalk that joins a leaf to a stem; leafstalk

Photosynthesis – The process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct.

Transpiration – the emission of water vapor from the leaves of plants. Water loss that occurs through the open plant stomata (tiny pores primarily on the underside of the leaf). Rate of loss is determined by wind and atmospheric humidity conditions.

References

  • Capon, Brian (1990) (Revised 3rd edition,      2005) Botany for Gardeners, Timber Press, Portland, London
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of      Western Washington. Knowledge and use of Indigenous plants by      Native Americans, University of Washington Press.
  • Pojar & McKinnon, (1994) Plants of the Pacific      Northwest Coast, Washington, Oregon, British Columbia & Alaska,      Lone Pine Publishing, Vancouver, British Columbia
  • Wikipedia – viewed on the internet April 2012.

NEXT TIME:  THE FLOWER

Advertisements

Read Full Post »

I went into the forest today to be thankful for the bounty and ask Great Spirit who loves us all to teach me about these amazing beings we call plants. I had that feeling I often have that I once lived in the forest with my tribe and my people. I feel at home in that forest. The farmers have brought in honey bees and the oak and maple have attracted the bees and other pollinators.  The air is churning with activity.  It is like a natural air conditioner swirling above me. The sound of the bees is so loud that I can barely hear the other sounds of nature.  Wildflowers are blooming everywhere: trillium, bleeding hearts, coral bells, false Solomon seal.  The pinks and buttercups and the wild berries are all in bloom.  The smell of the forest is sweet and musky all at once.

I have in my life time been introduced to many native plants and I have been taught about how everything is connected to this forest, even humans belong here if they will just slow down to be at peace with this place. 

It is spring and I am collecting many starts: cuttings, roots, sprouts.  Once they have roots and are strong, I will put them in pots and take them to the nearby farmers market and try to teach others about opening up their garden doors and letting the native plants back in.  It is important.  We are losing the pollinators and the fertility of the soil, and the hillsides and streams and rivers because we take out the native plants. We call them weeds and poison and chop and throw them away. These plants are our future and our hope.  Once gone, so goes our food, medicine, clean water, clean land, and beauty so great that our essential energy is affected and changed for the better.

Soon at the local farmers market I will be setting up my table and handing out simple brochures on how to incorporate native plants into gardens, farms, parks, roadsides and river and stream banks. I will sell the plants to support the overall Radical Botany project and to give back to the farm I am living on now. Carly, the land owner is allowing me to finally have a home for me and my plants.  I have moved a half dozen times in the last five years, always carrying my many plant friends with me.  We are tired. We need a real home that is safe and long term. I think I am home. I love this land. I am thankful for this land. I respect this land and the creatures and people who live here.

Thank you Great Spirit who loves us all for bringing me home.  Thank you Carly, Deb, Mitchell, Annie,  the farmers for inviting me in from the cold.

Here is a list of a few of the plants I saw today and why they are important:

Common Name Scientific Name    Ecological  Importance  and Human Use
Pacific Willow Salix lucida ssp. Salix lasiandra              

The catkins will attract insect and hummingbird pollinators, and all willows are used as butterfly host plants.

The same for Hooker’s Willow

The Fraser River Lillooet  called Pacific Willow the “match plant”.  They dried the wood and used it for both the hearth and the drill in making friction fires. The ashes were mixed with diatomaceous earth and were made into a fine white powder to treat wool.

Hooker’s Willow Salix Hookeria   The bark was used in shingle baskets, the young plants were split into twine and made into rope.
Pacific Ninebark Physocarpus capitatus Used to make small tools, but was also used as a laxative and needs to be handled properly. The flower attracts many insect pollinators and the birds will eat the berries of the plant. Beautiful shredding bark, this plant is found along streams, rivers and wetlands.
Oceanspray Holodiscus discolor Found in dry to moist, open sites (open woods, clearings ravine edges and coastal bluffs).  Commonly called ‘Ironwood” because of the hardness and strength of the wood. Was used to make digging sticks, spears, harpoon shafts, bows and arrow shafts by almost all coastal groups from BC southwards.  An infusion of berries was used to make a tea that was used to treat diarrhea. Also used as a blood tonic.  May attract as many as 50 pollinating insects.The flowers provide nectar for butterflies and insects. A caterpillar host plant for Pale Tiger Swallowtail, Lorquin’s Admiral, Echo Blue, Brown Elfin, and Spring Azure but­terflies. Oceanspray provides foraging habitat for insectivorous birds including Bushtits and Chickadees
Red Elderberry Sambucus racemosa Found along stream banks, swampy thickets, moist clearings and open forests, sea level to middle elevations. The unripe or uncooked berries are toxic can cause stomach cramps or worse. They should  always be cooked even when making Elderberry wine or jellies. The stems, bark leaves and roots, especially in fresh plants, are toxic due to the presence of cyanide-producing glycosides. Elderberry is an important caterpillar host plant and its white flowers attract hummingbirds.
Thimble berry
Rubus parviflorus

 

Has a white flower – petals crinkle tissue paper. Found in open sites such as clearings, road edges, shorelines etc. Has a red, raspberry-like cluster berry. The flower favorite of bumblebees and native pollinator insects. Spreads by rhizomes. Eaten by all Northwest Coast people.  Some people also collected and ate the early shoots. The berry can be easily dried.  Often mixed with Salal berries for winter food (dried).  Often mixed with native raspberries and blackcaps and used in a dried cake for winter food. The large leaves were often made into berry collecting containers.

 

Salmon berry
Rubus spectabilis

 

Has a pink to reddish purple flower. Found in moist to wet places of forests and disturbed sites. Often abundant along stream edges, at low to subalpine elevations. This wonderful wild berry blooms very early and attracts the earliest pollinators.  The berries arrive early in the season and attract several song birds. Both sprouts and berries were eaten by First Peoples.

 

Nookta Rose Rosa Nutkana Found in open habitats (shorelines, meadows, thickets, and streamside areas). Was often used in pit cooking. The leaves were placed over food for flavoring.  Tea from the bark were used as an eye wash. The chewed leaves were applied to bee stings and the ripe hips were cooked and fed to infants for diarrhea.Its seed-filled hips are full of vitamins A & C and are eaten by a variety of birds and mammals. Bees and but­terflies seek nectar from its flowers. A caterpillar host plant for Western Checkerspot, Mourning Cloak, and Gray Hairstreak butterflies.
Indian Plum Oemleria cerasiformis The flowers arrive very early spring to late winter – often before its leaves appear.  Important food source for pollinating insects, butterflies and the fruit is eaten by many woodland animals.  The fruit can be quite bitter and astringent so it was often mashed with sweeter berries such as Salal.  It bark was used to make tea that was used as a purgative and tonic.
Bleeding hearts Dicentra Formosa Pink heart-shaped flower. Found in moist forests, ravines, streambanks; low to middle elevations. Its namesake pink flowers attract hummingbirds and its rhizomes are reported to be medicinal by some, toxic by others. Ants feed on an oil-rich seed appendage. Bleeding heart is an important caterpillar host plant for the Clodius Parnassian.
White Oak or Garry Oak Quercus garryana A beautiful, heavy-limbed tree that is very important in helping to maintain the integrity of several low-lying ecosystems. Found in dry, rocky slopes and bluffs, sometimes in deep, rich well-drained soil. The springtime catkins (flowers) are highly attractive to honeybees and many native insect pollinators. The acorns are an important food source for ducks, deer, squirrels and other wildlife.  First peoples used the bark as one ingredient in the Saanich “4 barks” medicine used against tuberculosis and other ailments.
Big leaf Maple Acer macrophyllum Large, often multi-stemmed.  In the spring the flower will often appear with or before the leaves.  Found in dry to most sites, often with Douglas-fir, often on sites disturbed by fire, at low to middle elevations. Bigleaf maple supports a large ecosystem on its trunk, limbs and stems. These symbiotic relationships are important to native forest. Living on this tree you will often find: mosses, lichens, ferns, fungi, herb-like plants, small flowering plants etc. Many parts of the tree were used for food, medicine and utility.  Insects and bees pollinate the tree and produce about 1000 pollen grains (55µm each) for an individual flower.  Important solitary bees such as the Blue Orchard Bees, Osmia lignaria, are attracted to this tree
Fringecup Tellima grandiflora In the Saxifrage family. Found in  moist forests, glades, stream-banks, thickets and clearings; common from low to middle elevations. The Skagit pounded fringecup, boiled it and drank the tea for any kind of sickness, especially lack of appetite. Provides habitat and cover for small insects.
Yellow Wood Violet Viola glabella A common perennial in moist, shaded forests. Its flowers are yellow, with some petals boasting violet streaks. The flowers have a small spur which provides an excellent landing platform for insects, which are attracted to its nectar. A caterpillar host plant for a variety of butterfly species. Also known as stream violet.
Stinging Nettle Urtica dioica Common in moist, rich soil, often in disturbed habitat, nettles are a tasty green if cooked, a valued medicinal herb, and traditionally a good source for strong plant fiber. Nettles are also an important caterpillar host plant for the Milbert’s Tortoiseshell, Satyr Anglewing, and Red Admiral butterflies.
     

Read Full Post »

Oregon Grape

Oregon grape is one of my favorite plants. It is known by many healers as the goldenseal (Hydrastis canadensis) of the West Coast. I have used it to heal many ailments, including those of my cat and other animals. I’ve also used it to make dye for wool and basketry and to eat the berries for nutrition. All parts of the plant are valuable and powerful healers.  It is a plant to be respected!

Oregon grape lives in a tight, healthy tribal community, a perfect mirror of how a healthy human community once lived. It is very important to honor that community when harvesting this plant. 

Go to the Oregon grape community with right intent.  If you are a commercial “wild crafter” trying to make your quota, stay away!  Oregon grape is a powerful plant.

Harvesting the Oregon grape

Habitat: The Oregon grape lives throughout the western part of North America, in mountainous areas on wooded slopes that are below 7000 feet. Oregon grape plants exist in a specialized ecological community. Oregon grape roots and thrives under especially powerful healing trees like red cedar, sequoia, and Sitka spruce. 

Intention: Your intention should be first to learn the lesson the plant wants to teach you. Second, you should intend to use this medicinal plant wisely. Third, you should be respectful in harvesting, and fourth, you should always leave thankful for the medicine.

I guess I could also say that what I just shared with you should be the way to harvest all plants.

Selection: Never harvest the largest central plant.  This is the mother plant, a vigorous plant whose roots reach out to the whole community. Sometimes if the community is quite large, there will be more than one mother plant.  Think of these plants as tribal leaders. The largest plants in the community attract certain bacteria to the community soil, and they draw insects, other plant chemicals, and earth worms and other tunneling creatures that feed the community.

The largest plants are not always the ones that have the most color or the strongest medicine.  Be respectful–the plants to harvest are the smaller ones. Oregon grape is best harvested in August or September when it is full of berries.  It is OK if there are a few flowers on the plant.

Find the Oregon grape community. Look out in front of you, and you will see a plant whose leaves are especially green. The berries on the plant will be full and deep blue; the flowers, if still blooming, will be brighter than the others in the community. This plant will be in the outer circle of the community, not too near an animal or human path.

Root Harvest: When harvesting the root, slightly uncover the soil around the plant root. Do not pull up the plant!  Find a side root, not the tap root.  (The tap root is central to keeping the plant alive.  It is the largest central root that provides nourishment for the plant.) Use a sharp knife that has been cleaned with an organic seed oil like olive oil or sunflower seed oil.  Keep this knife clean between harvests.   Always place an offering to the Oregon grape next to the plant.  I carry tobacco, Mayan corn, or sunflower seeds that I grow especially for offerings.  Be thankful.  A root harvest is a wonderful gift from the Earth. I talk to the plant when I am harvesting.  I tell the plant that I will use its root wisely.  I talk about the healing that I need to do and ask for wisdom about the best way to proceed.  I sit with my journal and write down what comes to me about the plant.

Using the Roots

The root of the Oregon grape contains strong medicine. The bright yellow root, a color caused by an alkaloid called berberine, can also be used for dye. Berberine, the most studied of the alkaloids, has been shown to possess fungicidal and antibacterial activities as well as resistance against protozoa such as Giardia lamblia, Trichomonas vaginalis, and Entamoeba histolytica. This is a very powerful healing plant and practitioners should consult a plant healer to learn to make the tinctures and infusions.

The Oregon grape root is the most commonly used part of the plant. Recent studies indicate that M. aquifolium contains a specific multidrug resistance pump inhibitor (MDR Inhibitor) named 5’methoxyhydnocarpin (5’MHC) which works to decrease bacterial resistance to antibiotics and antibacterial agents.1

Oregon grape root is used almost exactly like other Berberis and goldenseal species, as an alterative (an agent that gradually changes a condition), antibiotic, diuretic, laxative, and tonic. It is commonly used internally to detoxify the blood in an effort to cure skin problems, and occasionally it is used as a treatment for rheumatism. In homeopathy, Oregon grape is used as a tincture for skin diseases, like acne, eczema, herpes, and psoriasis.

Using the Berries

Many of the First Peoples of Western Cascadia used the berries for food.  There was no difference between food and medicine for these indigenous peoples.  They recognized that whatever you put into your body caused healing or disease. There was no such thing as recreational food.  Native peoples used a few berries mixed with Salal or some other sweet berries as a staple dried food in the winter months.  Today the berries are made into jelly (mixed with other sweet berries or fruit). The berries are also used medicinally to cleanse the liver and gall bladder and to treat eye problems.  Don’t take all the berries on a plant; leave some for the birds and wildlife.

Using the Stems

The stems of Oregon grape were used by native peoples as a dye.  Stems were shredded with Oregon grape root and soaked, and a bright yellow dye could be extracted from the mixture.  I use sharp clippers to cut branches from a plant. When harvesting the berries and the stems, take a small amount from each plant.

Read Full Post »

« Newer Posts

%d bloggers like this: