Feeds:
Posts
Comments

Posts Tagged ‘Native Plant identification’

cathedral-grove-mossThere are places on the earth where everything is in balance.  Places where the boundaries between humans and nature disappear.  Upon entrance to these natural places the human spirit leaves the cloak of ego, struggle, separateness and the tension of the world falls away.

The Hoh rainforest on the most westerly edge of the Olympic Peninsula in Washington State is such a place.

“Come to the woods, for here is rest. There is no repose like that of the green deep woods. Here grow the wallflower and the violet. The squirrel will come and sit upon your knee, the logcock will wake you in the morning. Sleep in forgetfulness of all ill. Of all the upness accessible to mortals, there is no upness comparable to the mountains.” John Muir — John of the Mountains: The Unpublished Journals of John Muir, (1938), page 235.

I entered the Hoh Rainforest twice in 2013. I am only now writing about my experiences because something changed in me and I could not find the words to describe the emotions that welled up in me. Something lost, something found. I had a realization that we may be at a point of desolation in Western Civilization. We are destroying the places where our souls can find rest at an alarming pace. And, I feel helpless in stopping this destruction. And I am a refugee of those killing fields.

In spite of recognizing that the Hoh Rainforest may be all that is left of the rainforests of the west coast, my visits to the Hoh Rainforest helped me reconnect with my life purpose and develop a strong still voice, one with boundaries and courage.

I grew up near the coast range mountains in Western Oregon. At that time the rainforests were intact from British Columbia to Northern California. The habitat of animal and plant life was diverse and interconnected through that area. The ecology of the place provided shelter not only for the millions of species who lived there, but for the land east of the region. You see those precious rainforests created moisture for an area that spanned thousands of miles into the mid-west. Those precious rainforests seeded the clouds that came first from the ocean and passed over the area and dropped moisture on the Cascade Mountains, the Rocky Mountains and then finally fell and fed the great aquifers of the mid-west. Now the water is missing and the forests are burning. The water wars have begun and wildlife is going extinct.

Trail of Mosses

Trail of Mosses

Strong words, yes I know. Maybe you came to this blog for a description of a walk in the woods. Maybe you thought I would teach you about the native plants and fungi I saw. I will. I know. I saw. But for now you need to learn why my heart froze for an entire year.

Like I said, I grew up in Oregon. Millions of acres of Oregon’s forests, both public and private, have been clearcut over the past century. The devastation to wildlife, ecosystems, cloud ecology and snowpack reserves in the region is wide-spread and unrepairable.  I realize I grew up and lived in a war zone.  I am deeply scared by what I have experienced.

When I entered the Hoh Rain Forest I was both renewed and filled with much sorrow.  The place was Eden and I was a guest of the Great Creator who loves us all.  And yet the visits brought home to me what has been lost, and what is being lost.

And now, with that preface let us journey together.

Oh how I wish you and I were actually on the trail through the Hoh.  I am not a good enough writer to use words to describe the musky smell of the deep forest or the phenomenal song of the forest Robin .  All I know is that when I breathe in,  my body, mind and spirit remember something older than civilization.  The merging of flora, fauna, fungi, fresh air, local air currents, wind, rain, caverns of the tangled roots of an ancient Big Leaf Maple, Sitka Spruce and Western Hemlock create a wondrous natural world experience.

Wood Sorrel

Wood Sorrel

Receiving 12 to 14 feet of rain per year, the Hoh Rainforest is one of the best examples of temperate rainforest in the world.  The Hoh Rainforest that is intact is located within the Olympic National Park and is protected from devastation.  The Hoh River valley was formed thousands of years ago by glaciers. Between the park boundary and the Pacific Ocean, 48 km (30 mi) of river, much of the forest has been logged within the last century, although many pockets of forest remain.

I choose my hiking partners well.  I expected a long drive and then another long hike.  I wanted someone who could become part of the forest and was somewhat introspective.  I was not interested in timed excursions or a mapped out day hikes.  I wanted to let the forest lead me.

The first time I entered the Hoh Rainforest it was very early April 2013.  The wild flowers had not yet opened.  My friend Elizabeth agreed to initiate me to the Hoh.  She had been in the forest many times and had spent time alone living in a tent near the forest.  Her spiritual orientation to creation is what attracted me also.  She did not see humans and nature as being separate.  She knew the trees, the flowers, the streams, the paths.  She led me to a special place along the Hoh River where warm black sands provided an exceptional meditative place.

Elizabeth taught me how to find nearby lodging so we could enter the forest twice in our visit.  There is very limited camping in the Hoh Rain forest.  It is part of the National Park system and one must possess a seasonal pass as well as a reservation to camp nearby.  Even at the early part of the season, other people were present on the path-but they were few.

On our arrival to the park we entered the Hall of Mosses trail. I took a deep breath of the clean, fresh air.  I looked up and saw the towering canopy of Big Leaf Maple, Sitka spruce,

Hall of Mosses - Hoh Rain forest

Hall of Mosses – Hoh Rain forest

Western Red Cedar and Western Hemlock. Some of the trees were near to 300 feet tall. All along the path the Redwood sorrel (Oxalis oregana) grew in large communities. We stopped to chew on a leaf. The citrus-like taste refreshed us both. Small nubs of soon-to-be wild flowers shot up through the leaf and winter debris layers.  Although the weather was somewhat cool, the sun was out and the sunbeams shot down through the forest. It was a magical place and I am sure the Fae were present.

The cool moist landscape supported a community of unique lichen, ferns and fungi.  Lettuce lichen (Lobaria oregana), grew on the sides of trees and downed logs and the forest floor. The Spike moss draped itself across the branches of the Big Leaf Maple.

Young Sitka Spruce grew from a downed nurse tree.  These epiphyte flourish in Old Growth forests where generations of life lives and thrives one on top of the other.

Black cottonwood buds

Black cottonwood buds

We came upon a Black Cottonwood (Populus balsamifera) that was dropping it a sticky cone-shaped bud. The buds were fragrant with a balsamy scent.  We realized we had come upon a coffer of the mystical Balm of Gilead. We picked up the sticky orange and gold coverings from the ground and inhaled the spicy scent.  We understood that this bud contained a “salicylate precursors” related to aspirin and it was very healing.  We shared stories about Balm of Gilead and how it is found on several other trees like the Balsam Poplar.  We talked about how the sticky substance was used to line medicine bags of the First Peoples, both to protect healing plants and to keep out bad energy. We considered it a wonderful

find and put some in our pockets to soak at a later time.

We found native Willow growing along the Hoh river. There was both Pacific Willow (Salix lucida)  and Scouler’s Willow (Salix scouleriana)present.  I did not take any cuttings.  This place is sacred and it is actually against the law to remove plants or plant materials from a National Park without permission.  Also the Willow was sparse.  Willow used to flourish in this area.  The First People’s harvested it wisely for thousands of years.  They used it to make baskets and hats and containers.  They used it to patch housing and canoes and to make traps and fishing implements.  Now it is very sparse. It should be left alone and respected or we will lose it.  Such a gift.

I loved the sound of the Red-winged black bird as it sat in the tops of the Willow.  The river current was swift as the spring melt from nearby glaciers filled the river banks. We could hear the Spruce grouse nearby calling for its mate.  We saw an American Dipper in the nearby forest and a Bald Eagle soared overhead.

As we walked back to the Hall of Moss a young Roosevelt male Elk suddenly appeared on the trail some twenty feet away. We stood silently as it meandered along eating smallfungi composit

spring plants and sipping from a nearby stream.  It walked into a nearby clearing and lay down.  We very slowly moved away from the animal.  Showing great respect for such a large wild animal is very prudent behavior. It did not show fear of us at all.  Probably not a good strategy.  Hunting may not be allowed now, but humans have a way of changing their wildlife “management” plans and have been known to slaughter what is beautiful (i.e. the buffalo of Yellowstone Park).

We saw quite an array of beautiful fungi protruding from every tree, rock and moss-covered ground.  Most fungi obtain their food from dead organic matter (saprophytes).  The multi-colored Conk’s and Turkey Tails splashed hues of gold, red, brown and yellow across the trunks of ancient trees. It was a glorious initiation into the deep woods.

My second excursion into the Hoh Rain Forest happened just weeks after the first.  It was a mystical journey.  This second trip was inspired in a most unusual way. In the week after the first,  my dreams were filled with visions of the Hoh.  In one dream I was called to come up a path and visit a teacher.  The teacher was an unusual plant, one that I had not experienced before.  It was tall, very tall with outreached branches.  And it had large thorns.  I was somewhat afraid of the plant that presented itself in my dream.  I saw the thorns and thought “danger”.  But instead it spoke to me about personal power and having good boundaries in this life. It spoke to me about the changes coming and how humans may act toward one another during these times. And, it asked me to go back to the Hoh Rain forest and find it.  It did not tell me to harvest it, only find it and study it well because there was a life lesson to be found in finding it.

I did not even know what its name was so I contacted a herbalist I know who is deeply connected with the wild world.  His name is Sean Donahue and he is a traditional herbalist who teaches in Victoria, British Columbia at Pacific Rim College in the Community herbalist program. He teaches herbal energetics.  I heard him speak about some of the more powerful plants of the Olympic Peninsula and BC.  And I was pretty sure he would know this plant and how to find it and maybe he would teach me about what the dream might mean.  I sent him an email and also called him on the phone asking him about the plant.  He immediately identified the plant as  Oplopanax horridus or “Devils Club”.   Sean told me that Devil’s club calls us to go into the deep murky places within us and to open up to those hidden parts.  It helps shift people’s relationships to their grief, fear, pain, and sorrow, and reclaim their sense of self. Devil’s Club helps people reclaim their power and assert their right to be in the world.

I had gone through a time when I felt powerless.  I had attracted energies into my life that threatened the safety of my very soul.  Those others had been soul stealers and I had escaped only through prayer, energy healing and grace. Now I was scarred and at times so filled with grief that I could not move.  I had become afraid to go into the forest by myself.  My wonderful companion dog of 17 years had died and I had no way to sense my safety in the deep woods.  Without my frequent trips to the deep woods I had lost my way to that which is sacred. I felt frozen.  Sean said that an appearance of Devil’s club in ones dreams was a call to come back in the full power of the self.  To honor one’s gifts and to step up ones spiritual journey.

I told him that the plant called me to go to the Hoh Rain Forest again and find it.  Sean told me that he also wanted to go into the Hoh Rain Forest but had not had time to go since moving from the East Coast a year ago.  So, I asked him if he would like to go with me.  He said yes.  And so we journeyed.

It was beautiful spring time weather. By this time in late April the wild flowers had begun to bloom and the sweet smell of the early blooming catkins of the Big Leaf Maple had been replaced by the heavier smell of Skunk Cabbage flowers, fungi blooms and green leaf. Salmonberry – (Rubus spectabilis) and Huckleberry (Vaccinium sp) were beginning to bloom.  Sword fern unfurled along every trail. The streams were full of tiny young salmon (fry) that were being carried along the currents of the forest streams.  The song of Robins filled the forest canopy.

Sean Donahue with giant Conk fungi

Sean Donahue with giant Conk fungi

There was a light rain that day as we proceeded down the Hall of Mosses.  We walked for several miles.  There was no sign of Devil’s Club.  I wondered about that.  I had expected to come upon it suddenly in a glen. But no, its appearance would be on its own terms.  I asked several hikers if they had seen it.  One man said you had to walk a good ten miles to see it and then it might be too early to see it with leaf.  As we walked we saw many wondrous things.  The Conk and Turkey Tail fungi we there in all their glory.  The forest was a fairy land of fungi.  The spring rains had awakened the fungi forest.  The colors of the fungi ranged from violet to gold and red.  The dark Chaga was tinged with violet and red. Small transparent fungi spread their skirts against the bright green moss.

Sean and I walked slowly through the forest looking at the magic of the place.  We immersed ourselves in the community of nature fully intact. These are the days I live for.  For nature is my true home, my mother and my family.

We had a wonderful day but we did not see Devil’s Club.  I was somewhat let down.  When I have these mini failures I begin to doubt my ability to connect with the higher forces, the angels and the Great Spirit Who Loves us all.  Sean did a teaching for me.  He taught me about the energetics of the Western Red Cedar.  I love this tree.  It is truly the central reason there is a rainforest here.  This tree collects enough rain fall yearly to supply drinking water for a small village.  It is a protector plant for thousands of other plants, animals, fungi and cloud cover.

I video-taped Sean’s teaching and will share it below:

Video of Sean Donahue talking about the medicine of the Western Red Cedar

We left the Hoh Rainforest and headed back toward Port Angeles.  On the outskirts of PA we decided to drive toward Hurricane Ridge and check out the flora.  The ridge itself was still covered with snow.  About a mile up the road Sean called out “stop!  There it is…Devil’s club”.  Sure enough the entire hillside along the road was covered in Devil’s Club.  We drove down a side road exploring the plant life.  The stream bed and bog along the road was covered in large yellow-flowered skunk cabbage.  There were many Red Cedar and then we saw it.  A very large Devil’s Club set back in the forest.

Devil's Club - Oplopanax horridus

Devil’s Club – Oplopanax horridus

We got out and Sean began to teach again about the plant. He taught me about plant “signatures” and ask me look closely at the signature of this plant.  I could see with its armor that indeed there was an air of boundary-making.  Its branches somewhat outreaching and yet protective of the core of the plant. It stood out in its uniqueness and yet it had boundaries.  There too was I.  Always standing up and speaking out against injustice but then experiencing the crush of the status quo. I do believe that I do not have good boundaries with these people.  I need to develop discernment.  This is especially true in these ‘Changing Times”.

How the plant was used for medicine

The First People’s used the bark of this plant as a purgative .  The bark was also used as a poultice for headache and pain.  It was used to draw out rheumatism and aches. But it was also used to draw out toxins in the body via purging. A very powerful medicine on the physical level, and also used to draw out stagnant and stuck energy on the energetic level.

The medicine of this plant is so strong that a poultice was used to knit broken bones.  So, it is…could the energetics of this plant knit back together my faith in humanity?  Will I be assisted in my task of letting go of darkness so that I could continue on a path to self awareness and deep connection with the divine?  Will I be able to help in this transition time?  Can I serve?  That is really all I want from this life?  Is that too much to ask for.  Devil’s Club says “Go deeper”.

References and Acknowledgements

Special thanks to Sean Donahue for letting me link to the video of his Western Red Cedar teaching. And for teaching me about our allies in the plant world.

Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.

Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London

 

Advertisements

Read Full Post »

Red Alder (Alnus rubra)

During the storm I dreamt of Red Alder.  I dreamt that the spirit of the tree was leading me away from danger.  Then I woke and saw ruts of the big machines and I cried for the forest.  Soon after the Red Alder came up through the sun-baked soil of the clear-cut. – Ellen O’Shea – Radical Botany

Red Alder Grove along stream

Some plants are trailblazers.  They show up when great change has happened.  They grow in the ruts of human civilization, the mud, the flood tracks and the places where sun and wind prohibit other plants to grow. Red Alder just such a trailblazer. A true pioneer plant.  It shows up to heal, grows fast, stays a short time, then allows the tall conifers, the redcedar and majestic Bigleaf maple and other trees to take over.  It is a friend and healer of the forest. It is a tree that perseveres in the direst of circumstances. Even after massive clear-cutting and wild fire destruction where the forest seems changed forever, the Red Alder will push up out of the graves of other trees and change the soils.  It is an alchemist.  It will attract the bacterium needed to change the acid of riddled sun-parched soils into  the conditions needed to bring back an entire eco-system.  After the Red Alder emerges, the tiny herbs, the ferns and sedges follow.  Soon after that the wildflowers, elderberry shrubs, Indian plum and wild honeysuckle will follow. And then the conifers and larger deciduous trees follow and a whole forest eco-system emerges.

The Red Alder soothes the hardest of earth and entices the fungi, bacteria and nutrients back into the forest floor. The bacterium on its roots fix the nitrogen needed to feed the forest community. A grove of Red Alder will only live about 100 years, just enough time to coax the forest community to come home one more time.  As a healer of humans its bark is used to sooth the acid stomach and gallbladder, clean the lymph glands and bowels, entice the poisons from the skin and open up the lungs.  A poultice of the bark will bring forth the inner poison.

Red Alder wood chips are often used to cultivate eatable and medicinal mushrooms such as the Shiitake.

THE NAME

Clallam  – s’ko’noiltc

Quinault – malp

Swinomish – su-k’uba’ts

Alder is the common name of a genus of flowering plants (Alnus) belonging to the birch family Betulaceae. The English name was derived from the bright rusty red color that develops in bruised or scraped bark. The outside bark is mottled, ashy-gray and smooth, often draped with moss. But just inside is the glorious red used for dye and medicine.

HABITAT

Red alder (Alnus rubra) are the largest species of alder on the west coast of North America.  The tree can grow to 40 feet or more, needs full sun, is a nitrogen fixer, tolerates poor, wet soil and is found in valleys in the Cascadian bio-region as well as the foothills of the Cascade Mountains. Red alder is a fast- growing but short-lived (old at fifty, with a maximum age of about a hundred years).

For years, as the rain forests of the Pacific Northwest were devastated by massive clear cutting of the region, Red Alder was thought to be invasive and was destroyed.   For the first 100 years of European settler decimation, the Red Alder was thought to be scrub, a noxious weed and unnecessary for forest health.  Then in the 1970’s and 80’s as second and third growth Douglas fir tree farms failed to thrive, research showed that an essential part of the forest eco-system was missing.  Red Alder, an amazing nitrogen fixer had been systematically removed from the forests using massive amounts of chemicals and extraction methods of forest management.

With the lack of nitrogen in the forest soils, other native species began to be stunted and attract disease. But as foresters began to study forest re-growth, they noticed that Red Alder was one of the first trees to return to a clear-cut.  They also noticed that as the Red Alder stands thrived, so did the small plants, shrubs, and then other tree species thrive. The Red Alder is a forest healer; it brings life back to much damaged soils.  For soils that have been heavily sprayed with toxic chemicals, the introduction of Red Alder is less successful.

RED ALDER AND NITROGEN FIXING BACTERIUM

An important nitrogen-fixing bacterium in our Cascadian bioregion is Frankia ahni.  Red Alder (Alnus rubra) and other types of alders are the host for this important bacterium. Alder is particularly noted for its important symbiotic relationship with Frankia ahni, an actinomycete, filamentous, nitrogen-fixing bacterium. This bacterium is found in root nodules, which may be as large as a human fist, with many small lobes and light brown in appearance.

I found a great online source for explaining the nitrogen fixing process. “A Nitrogen Fixation: The Story of the Frankia Symbiosis by Peter Del Tredici a Harvard researcher can be found at this link: http://arnoldia.arboretum.harvard.edu/pdf/articles/1995-55-4-a-nitrogen-fixation-the-story-of-the-frankia-symbiosis.pdf

Here is a quote from that document:

“Before atmospheric nitrogen can be used by plants, it must be “fixed,” that is, split and combined with other chemical elements. This process requires a large input of energy and can occur either biologically, within the cells of various bacteria, or chemically, in fertilizer factories or during lightning storms.

Among all living organisms, only bacteria have evolved the complex biochemical mechanisms required for nitrogen fixation. All “higher” plants and animals that are said to fix nitrogen are really only the symbiotic partners of the bacteria that do the actual work.”

Red alder is often found growing near coast Douglas-fir (Pseudotsuga menziesii subsp. Menziesii), western hemlock (Tsuga heterophylla), grand fir (Abies grandis), western redcedar (Thuja plicata), and Sitka spruce (Picea sitchensis) forests. When found along streambanks it is commonly associated with willows (Salix spp.), red osier dogwood (Cornus stolonifera), Oregon ash (Fraxinus latifolia) and bigleaf maple (Acer macrophyllum).

Red Alder leaf

THE LEAVES

Alternate, deciduous (fall off the limb in the autumn), broadly elliptic, and sharp-pointed at the base and tip. The leaf top is dull green and smooth, and the underside is golden-colored and hairy. The leaf margin is revolute, the very edge being curled under, a diagnostic character which distinguishes it from all other alders. The leaf turns yellow in autumn before it falls from the tree.

 

The male and female catkin

THE FLOWER

The flowers are catkins with elongate male catkins on the same plant as shorter female catkins, often before leaves appear; they are mainly wind-pollinated, but also visited by bees to a small extent. These trees differ from the birches (Betula, the other genus in the family) in that the female catkins are woody and do not disintegrate at maturity, opening to release the seeds in a similar manner to many conifer cones. The catkins form in the fall, and then overwinter, ready to open or flower in spring. The female catkin is cone-like, droops slightly, usually in clusters of threes.

The male catkin is slender, cylindrical, hanging in clusters of 3 to 5 from short leafless branches.

THE FRUIT

Red Alder cones or fruit

The fruit is clusters of brownish cones which are quite small (up to 2 cm long). They remain on the trees over the winter and contain oval winged nutlets. About 2000 seeds are normally produced by the cones which are normally spread by the wind but also by the water and birds. The seeds have a viability of about 45%. Seeds are normally dispersed between the months of October and March.

THE BARK

The bark is thin, grey, and smooth often with white patches of lichens.  The bark will turn bright red to rusty red when cut.

As a weaver I often sought the bark of the Red alder as a source of dye.  I peeled back the bark and exposed it to air and it would turn a brilliant red.  As the bark dried the color of the bark changed from red to a slightly golden brown.  I fixed the color using apple cider vinegar.

MEDICINE

Red Alder is a bitter and an astringent (Meyer p.3).  Bark twigs and buds were used. An ointment of the bark was used to cure eruptive skin diseases (Stuhr  p. 21). Catkins are edible and high in protein, but are very bitter in taste and utilized usually on for survival food. The wood is used to smoke cooked food.

The Bark of the Red alder contains anti-inflammatory salicin that metabolizes into salicyclic acid in the body.

Cut of the Red Alder – new (red) and old (golden)

Salicin is related to Aspirin. Red Alder bark is used for relief from poison oak, insect bites, and skin irritations.  The Red Alder bark is used in infusions to treat lymphatic disorders and tuberculosis.

The bark was boiled and drunk for colds, stomach trouble, and scrofula sores. The rotten bark and woody parts were rubbed on the body to ease “aching”. (Gunther p. 27)

The wood was used to make canoes, boxes and paddles and multiple other utility implements.  Like the Western Red Cedar, this tree was widely used by the first people of the Cascadian bio-region. The wood was important because it could be used while still green, seasoned and not split in the sunlight.  The wood of the Red Alder has long been used to smoke salmon.  The bark was used to line baskets for storing wild berries, roots and other foods and herbs.

POLLINATOR AND BUTTERFLY HABITAT

Alder leaves and sometimes catkins are used as food by numerous butterflies and moths. The late winter and spring catkins are beneficial to more than one species of bee,  and depending on nearby habitat may attract other insect pollinators, such as butterflies, hoverflies, and pollinating beetles. If the Red Alder is close by water, the pollinators can be plentiful.

Red Alder is a better butterfly host plant than the Asian butterfly bush, which only provides some nectar, not structure to attach chrysalis, nor leaves for caterpillars after hatching.

If you would like to learn more about native plants and the pollinators they attract, order the wonderful book  put out by the Xerces Society called “Attracting Native Pollinators”.  The book is coauthored by four Xerces Society staff members Eric Mader, Matthew Shepherd, Mace Vaughan, and Scott Black in collaboration with Gretchen LeBuhn, a San Francisco State University botanist and director of the Great Sunflower Project.  More on the book go here – http://www.xerces.org/announcing-the-publication-of-attracting-native-pollinators/

VIDEO  AND ONLINE RESOURCES

Article about Red Alder healing capacity by Kiva Rose, herbalist- http://bearmedicineherbals.com/alder-tree-of-transformation-healing.html

How to identify a Red Alder – http://www.youtube.com/watch?v=tBdmL5A0_3c

Interactive Distribution Map of Alnus rubra – http://www.plantmaps.com/nrm/alnus-rubra-red-alder-native-range-map.php

REFERENCES

  • Del Tredici, Peter (1995) Nitrogen Fixation: The Story of the Frankia Symbiosis, Harvard University, Arnoldia Arboretum – viewed on the web on November 9, 2012 – http://arnoldia.arboretum.harvard.edu/pdf/articles/1995-55-4-a-nitrogen-fixation-the-story-of-the-frankia-symbiosis.pdf
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  • Tilford, Gregory L., Edible and Medicinal Plants of the West, ISBN 0-87842-359-1

Read Full Post »

BIG LEAF MAPLE (Acer macrophyllum)

Trees are sanctuaries. Whoever knows how to speak to them, whoever knows how to listen to them, can learn the truth. They do not preach learning and precepts, they preach, undeterred by particulars, the ancient law of life. –       Hermann Hesse, Trees: reflections and poems

Dear ones,

I have struggled for weeks for the words to express my love of the trees. My last attempt while teaching about conifers was to create graphs, with just the fine points, of how to possibly experience conifers.  I spent hours trying to choose just a few words to express the cones, needles, wildlife, habitat, healing qualities and ethnobotany of each tree. I wanted you to carry the graph into the forest and touch each tree.

But somehow it felt empty.  I did not have enough space to express the soul of the tree.  The one thing above all else is that I want you to know that the trees are alive! They are alive in a way that humans are alive.  And we humans are decimating them.

Now, I want teach you about 12 deciduous trees that live in the Cascadian bio-region. There are far more than 12 of course. But these 12 are my friends.  I will again teach in essay form- as a story teller. That is what Great Spirit who loves us all wants me to do. Tell you the story of the tree and how we are related.  I will attempt to convey what the trees have taught me, rather than what science has collected about the trees.  I want you to fall in love with the trees.  I want you to go outside and embrace the trees as you would a lover.  I want you to cherish the trees so much that you will not allow them to be decimated. I will teach you the indigenous name as well as the common English language and Latin name of each tree so that you can learn how humans related to the tree for thousands of years.

So let us begin

BIG LEAF MAPLE (Acer macrophyllum)

The Name- before the Europeans came and renamed everything, this tree was called many things.  It was a protector, a habitat creator, a source of food,shelter, medicine and tools.  It was a wood used to make canoe paddles and ceremonial masks and rattles. It was a sacred being in the forest; it was much revered. Here are a few of the names that the First Peoples of Cascadia used to identify this tree.

sqəlelŋəxʷ = Salish =Any large Tree

K’u’lawi = Chehalis

Cuk’ums = Cowlitz

Stsla’act = Klallam

K!amali’tc = Lummi

K!o’luwe = Skokomish

Two years ago I lived in an older apartment complex near Oregon State University in Corvallis, Oregon where there was a still-standing grove of Big Leaf Maple trees.  The large trees had been on the land for over 200 years and were part of the original farmstead that graced the area 100 years ago.  A developer bought the property in 2009, tore down the trees in 20122, and built a shambles of cheap “student” apartments.  My heart was broken.  I had known these trees since my childhood.   I moved away and took my potted garden with me.  Much to my delight many of my potted native plants and herbs pots began to sprout Big Leaf maples.  The trees near my apartment had dispersed their “Samara” or winged seeds to my pots and I unknowingly took them away from the slaughter.  Today they still travel with me as I search for land to settle on.  They are getting quite tall and I may have to find a safe haven for them in a nearby forest.  It does my heart good to know that I took the offspring of my childhood friends to a new life. I hope that I can also find a place to plant myself near these young ones and watch them grow.

THE BIG LEAF MAPLE – A Mother Tree

These trees are magnificent large trees that can grow over 100 feet tall and branch out another 100 feet as well.  The tree offers shelter to diverse wildflowers that need shade and moisture. Wherever you find this forest of Big Leaf Maple you will find Bleeding hearts, ferns, Larkspur, Trillium, Salmon berry, Thimble berry, Indian plum, and Elder berry.  Vine maple and other native shrubs are found growing under this tree. The branches often harbor a completely new eco-system of ferns, mosses, lichen and herbs. Numerous birds nest in the branches and the knots and cave-like holes found in its bark.

The Big Leaf Maple is the “mother tree” of the forest.  Much like the Western Red Cedar in the conifer forest, the Big Leaf Maple attracts the conditions, the plants and fungi that create a healthy viable eco-system.

I used to climb these big trees.  I know these trees. The trees can live hundreds of years.  Their outstretched large limbs made a wonderful place to hang a tree cocoon (canvas tent hung in a tree).  The wildlife attracted to the tree was phenomenal.   One of my favorite things to do in the spring was to visit the blooming flower of Big Leaf Maple.  I stood under the tree and felt the light breeze of the thousands and thousands of bees and other pollinators visiting the tree for nectar. There was so much pollen distribution that it fell downward and peppered the ground with a light yellow dusting.  I came away covered in pollen.  It was such an invigorating experience.  I often built fairy altars under the tree in thanks giving for its great beauty and vitality.  White Oak (Quercus garryanna) grew on the edge of the forest.  Red cedar and other conifers speckled the forest.  Squirrels, deer, blue jays and wild doves moved throughout the forest.  Wild rabbits and raccoons ran along the well-traveled animal trails.

THE RACEME – The flower of the Bigleaf Maple

The Raceme- is a pendulum-like flower stalk that hangs down from a short stalk attached to an early spring leaf bud. It is unbranched and it’s yellowish to light green flowers open up to an array of wild and domesticated bees and other pollinators.  The Bigleaf maple begins to flower at about 20 years of age.  Insects and bees pollinate the tree and produce about 1000 pollen grains per flower. The flower pollen and other secretions are quite sweet. The nectar-rich flowers were eaten raw in the spring by the Sannich First peoples.  It was said to be an over-all spring tonic and was highly nutritious. The sticky gum of the spring bud was used as a hair tonic.

THE LEAF

It has the largest leaves of any maple, typically 15–30 centimeters (0.49–0.98 ft) across, with five deeply incised palmate lobes.  They are dark green above and lighter green below. The leaf will turn yellow in the fall.

The large leaves were used under layers of food while cooking on an earthen oven.  The leaves were used to cover food cooking in pits. The leaf stalk has a milky juice when cut. This is the sticky gum used in hair tonic.

 

THE SEED- SAMARA

My favorite wild seed – called a “whirly-gig” by children and more playful adults. The fruit is a paired winged seed called a samara. Each seed is approximately 1–1.5 centimeters (0.39–0.59 in) in diameter with a 4–5 centimeters (1.6–2.0 in) wing.  Wings help to disperse the seeds throughout the forest. The whirly-seeds or double-winged samara, as well as spring’s leaf-buds, are a major food source for squirrels, birds, & other wildlife. The First Peoples of the Salish Coast ate the young sprouted seeds as food.

THE BARK

In the more humid parts of its range, as in the Olympic National Park, its bark is covered with epiphytic moss and fern species. The species that grow upon the branch of the Bigleaf maple can form canopy roots deep into the adhering mosses. The mosses are often so deep they create their own soil and their own ecosystem. The bark of the tree is green when young and grows grey-brown and ridged after a few years.

HABITAT

 This species of maple is found in dry to moist sites, often with Douglas-fir. Found in low to middle elevations in its range.  The trees are found along riverbanks and in somewhat early spring damp areas.  The trees will begin to rot if they stand too long in flooded areas, but they are often found in native rainforests.

ETHNOBOTANY

In many coast Salish languages, its name actually means “paddle tree” because the people are able to carve paddles out of its wood due to its great size. Some other helpful tools fashioned from the Big-Leaf Maple include dishes, spoons, hairpins, combs, and scouring pads.The inner bark was eaten in small quantity as it was constipating. The inner bark was also used to make baskets, rope and whisks for whipping soopolalie berries. Some First Peoples ate young maple shoots raw, and also boiled and ate the sprouts when they were about 3 cm tall. The leaves, like Skunk Cabbage leaves, were used as a base for drying berries. The large leaves were also used for storing food during the winter or burned in steaming pits to add flavor to food.

The wood was used for spindle whorls and various other implements such as combs, fish/duck spearheads, and fish clubs. The ends of branches and strips of bark were used in basketry.  The wood was used to make masks and rattles used in ceremony.

The sap was boiled and made into sweet maple syrup and sugar by some First Nations.

POLLINATORS ATTRACTED TO BIGLEAF MAPLE

 The Bigleaf maple is an important early blooming tree.  The tree blooms in March and is essential food for many wild bees, honey bees and other pollinators that are now threatened because of habitat and plant loss.

Here is a short list of wild bees that need this tree for food and habitat:

Solitary bees – Osmia aglaia – O. aglaia are metallic blue, green or rust/bronze in color. They nest in tunnels in wood about 3/8 – 1/4 inches in diameter. They are active as adults in late spring, while Rubus is in bloom

Osmia lignaria- mason orchard bee

Blue Orchard bees – Osmia lignaria, in the Portland area and in WashingtonState are more attracted to Big leaf Maple, Acer macrophyllum

 

And of course the honey bee-

A short video looking at the structure and habitat of the Big Leaf Maple

References

  • Gunther, Erna (1973) revised edition Ethnobotany of Western Washington, University of Washington Press, Seattle and London.  pp. 39
  • Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London, pp.38
  • Pallardy, Stephen G. (2008) Third Edition,  Physiology of Woody Plants, Academic Press, Burlington, MA – Elsiver Inc. pp. 90
  •  Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Read Full Post »

“Beauty and seduction, I believe, is nature’s tool for survival, because we will protect what we fall in love with.”– Louie Schwartzberg, from The Hidden Beauty of Pollination

After I posted the first part of the “The flower in three parts” my current essay series, I received an email from someone who said “The Flower in three parts, sounds like a symphony”.  Yes, I said, that is the energy I have been trying to convey to others that botany, plants, native plants, flowers are all part of a symphony of life. Each part of the flower and its growth processes are important to the whole. The first part or movement was to turn your attention to this fantastic creation sitting at the end of a stem. I hoped to raise your curiosity.  I tried to flood your senses with wonder at the design and substance of flowers. It was a slow movement encumbered by way too much vocabulary but necessary if you are to truly meet the flower in all its wonder.

I have been drawing you into the allegro or opening sonata in order to capture your attention for the second movement the main allegro or scherzo: The pollination cycle or sex life of flowers. And finally in The Flower – part 3: “The Flower as Healer”, I will end with one of the strongest connections between humans and flowers: they heal us – the finale – we are flowers ourselves.  We are they and they are us. What we do to the flower, we do to ourselves. If we kill off the pollinators and clear-cut the plant kingdom, so goes all Eden, of which we are a part.

But now for Part 2: Pollination and The Sex Life of Flowers

The name of the second part “The sex life of Flowers” came from my research on flowers and their ways and means of pollination. While researching I

Sauromatum-guttatum-Voodoo Lilly

discovered a scientist named Bastiaan Jacob Dirk Meeuse.  He was a naturalist and botanist who was a professor at the University of Washington. He lived from 1916 to 1999.  Meeuse was a prolific researcher whose five decades of research on the exotic but stinky voodoo lily resulted in numerous contributions to science.  Dr. Meeuse was an authority on pollination, especially by insects and birds, and wrote the textbook ”The Story of Pollination” (1961).

In the 1980’s his research contributed to a well-known public television documentary called “Sexual Encounters of the Floral Kind” (1983). I have links to segments of the documentary in end of this essay. In 1984 Meeuse co-authored a book along with Sean Morris called “The Sex Life of Flowers”.

Meeuse was a botanist attracted by the exotic, he unlocked the secrets of the voodoo lily (Sauromatum guttatum) a relative of the corpse flower (Amorphophallus titanum). The voodoo lily has a very strong smell and generates much heat, up to 108 degrees when it ready for pollination. When it flowers, perhaps once a year, its fleshy purple spike emits waves of heat and an odor not unlike that of rotting meat. The chemicals released by the heat apparently helped to attract pollinators. (see picture).

Meeuse, along with his research team documented the flower cycle and the important relationship between pollinators and flowers. Meeuse and Morris found innumerable examples of mimicry in which the flower part has evolved to resemble a female bee. The male, trying unsuccessfully to mate with the flower, unwittingly collects and spreads the orchid’s pollen.

Here are a few facts about mimcry in pollination: When the male wasp tries to mate with the dummy female, he fails, but the orchid succeeds in getting pollen on the wasp. He flies away, only to be fooled again by another orchid pulling the same trick. In the process, the wasp transfers pollen from flower to flower. Plants that are farther away from each other are more likely to be distant relatives, so mimicry may reduce inbreeding. Posing as a sexual suitor may be a strategy that allows the geographic spread of plants over a wide area — generally, insects will travel further to find a mate than to find a meal.

Here is a link to the BBC documentary using some of Meeuse’s research:Wild Orchid and wasp mimicry – http://www.youtube.com/watch?v=-h8I3cqpgnA

Another important aspect of Meeuse’s research was to show that flowers develop MANY paths to pollination.  Flowers can be asexual (agamogenesis), hermaphrodites, only male or only female. And then there are the combinations. The only way to learn about a plant and its lovely flower is to sit with it, study it. Learn its entire life path. You just can’t make any broad statements about how flower reproduction takes place.

THE FERTILIZATION PATHWAY OF THE ZUCCINI SQUASH

Female and Male flowers of Zucchini Squash

Let’s look at the squash plant: A Zucchini squash plant has both male and female flowers.  Male flowers usually appear first and have a thin stem. Female flowers appear later and have a small, baby zucchini developing between the base of the flower and the vine. The male flower will usually open in the early morning, attract a certain type of early morning foraging insect, then can die away by the late afternoon.  The female flower will open later in the day and again attracts the same pollinating bee or insect and is fertilized by the pollen it is carrying.  If the small squash rots away then it has not been fertilized.  This can show a lack of garden pollinators. Hand pollination may be the only way to have a good crop of squash.

There is a very fragile dance going on here.  If there are no pollinator bees or other insects, our food will disappear. On most flowering plants there is only one short time frame in which a flower can be pollinated and if the conditions are just right or there are not enough pollinators available, no fertilization can happen. As in many processes in nature, timing is important. The female reproductive part of a flower is receptive to pollen only at certain times of the year. Creatures like insects and birds, which move from flower to flower in search of food, are a fast and often guaranteed way for plants to distribute their pollen.

Not all flowers need to be so cunning. Several angiosperm species including grasses bear inconspicuous blossoms – that use the wind for pollination.

Sometimes drought and disease can cause squash plants to only produce male flowers. Now this lack of fertilization can also be caused by severe weather change, or lack of fertilization in the soil types or pollution that causes mutations of plant or pollinator. Yes, the fragile dance is important to support.

PLANT CELLS AND THE MERISTEM-FLORAL

Floral-Meristem Physiology

For the last few months I have been leading you on a journey from the root to the stem to the branch and now on to the flower. All the while following the adventures of the meristem cell.  At the point of developing the flower, the meristem cell morphs into a meristem-floral cell and begins to produces cells that will become the structure of the flower.Plants produce 2 types of reproductive cells.  The first is the spore – found on such plants as ferns. The second is formed during sexual reproduction – a process where a population is divided into male and female members or distinct male and female structures on individual plants. The DNA of the plant, stored in these specialized flower cells will begin to build the structures and organelles that will become the flower. Flowers give rise to fruit and seeds.

BASIC SEXUAL PARTS OF A FLOWER

Flowers are short branches bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved (Capon 2010).  Both the male and the female reproductive parts of a plant are in the center of the flower. The male, pollen-producing part is called the anther, held aloft by a stalk called a filament. The entire male apparatus is called a stamen. Each pollen grain is unique to its species. The female reproductive part of a plant, the stigma, sits on top of a style, or stalk, which leads to an ovary at the base. The entire female plant mechanism is called a pistil. This is the illustration of a perfect flower having both female and male parts (some do).

Flowers have figured out a way to do the amazing things they do while taking care of the place that will take care of their offspring.  They are focused on having their genetic material here 10,000 years from now. Plants seduce pollinators with fragrance, hue, platform structure and a promise of sex with another of its own kind and ensure return visits with the promise of nectar.

Some flowers attract with scent, some with color. Most offer nectar as an enticement to visitors and as a way to ensure repeat visits. The chemical ecology of plants seeks not only to attract pollinators, but keep predators away. The complexity of floral odors mediate interactions between flowers and pollinators to guarantee reproductive success (Carde and Ring 2004).

Return business is particularly important for plants that encase many seeds in a single fruit—raspberries, for instance, or melons. A poorly pollinated raspberry will have many shrunken, dry drupelets. A melon blossom that doesn’t attract enough pollinators may produce a melon that is small, lopsided, and not very sweet.

A few varieties of plants have adapted the shape of their flowers to favor certain pollinators—tubular blossoms attract hummingbirds, for instance, but the nectar is often inaccessible to bees.

Lady Slipper Orchid

Other plants aren’t choosy. They’ll do business with birds and bees, and also with wasps, beetles, rodents, and even humans if that’s what it takes to move the pollen.Many flowers have a distinctive bull’s-eye color pattern or a throat of a different shade from the outside petals, to help insects and birds find the payload of pollen.

Plant structures, too, are designed to attract specific pollinating partners. The Queen Anne’s lace flower places its nectar right at the base of its tiny flowers where pollinators with a short proboscis (nectar-gathering appendage) such as honeybees, ants, wasps, flies, and beetles can reach it when they crawl on the flower. On the other hand, bumblebees, butterflies, and moths have long proboscises, which enable them to reach nectar in less accessible places. For example, the long shape and curve of the columbine flower complements the long tongue of a bee, butterfly, or hummingbird. By concealing the nectar deep within its trumpet-like blossoms, the columbine prevents animals who are not its pollination partners from taking the nectar and transferring any pollen.

WHY ARE HUMANS ATTRACTED TO FLOWERS?

Are humans also pollinators?  Michael Pollan, author of “Botany of Desire” writes in his 2002 article called “Border Whores” that some evolutionary psychologists have proposed an interesting answer. Their hypothesis goes like this: our brains developed under the pressure of natural selection to make us good foragers, which is how humans have spent 99 per cent of their time on Earth. The presence of flowers is a reliable predictor of future food. People who were drawn to flowers, and who, further, could distinguish among them, would be much more successful foragers than people who were blind to their significance. In time the moment of recognition—much like the quickening one feels whenever an object of desire is spotted in the landscape—would become pleasurable, and the signifying thing a thing of beauty.

Humans have danced with the flowers, written poetry, songs and spent endless hours nurturing their flower gardens.  The flower is etched into our psyche- we are changed by the floral scents, the structure and the nectar.  Humans have used flowers for food and medicine for thousands if not millions of years.  It has only been recently that we have become “plant and flower blind. It has only been in the last 100 years that we have begun to call certain flowers “weeds” and have conducted a chemical warfare on our beloved inspirers.

We humans have lost the ability to love the plants and their flowers. We cannot see the connection between life on earth and the need to pave over paradise. We need to grow and protect fertility.  In ensemble that is what ecosystems do, it creates more and more opportunity for life. We need to create conditions conducive to life the same way flowers and plants do. Ban all the dangerous chemicals and stop making war on the natural world.  We need to make peace with the flowers and the plants and all species. Namaste.

CASCADIAN NATIVE PLANTS THAT YOU SHOULD KNOW ABOUT

Oceanspray-Pacific Ninebark-Spirea

Matthew Shepherd of the Xerces Society reports that there are approximately 900 species of bees and approximately 200 species of butterflies in the Cascadian bioregion.  Native plants are the forage of choice by these pollinators. Some native plants attract a great many pollinators.  Cascading plants such as Pacific Ninebark (Physocarpus capitatus), White Spirea (Spiraeabetulifolia), and Ocean Spray (Holodiscus discolor) could be attracting hundreds of types of pollinators.  They often grow near wetlands, stream banks and moist forest lands.  They should be included in all landscaping projects where ever possible. These essential native plants will bring wildlife into any garden or natural area and guarantee the pollination for many flowers.

Another extremely important indigenous plant is the Willow. The Willow species are the basis of a vital food web for insects, birds, small mammals, larger animals; many soil organisms, bacteria and fungi. They are a very important habitat.  In particular Apis mellifera, (the honey bee) an insect belonging to the Hymenoptera Order use the early blooming Willow flowers (catkins) to survive long wet, cold springs. These insects are not damaging to the willow leaves or flowers, but are feeding on nectar and are helping to pollinate other early blooming plants (Aliner 1992).

The flowers of the Willow are inflorescences, taking the form of catkins, which develop in a familiar way, through the loss of the bud scale and the revelation of the silky hairs of the ‘Pussy Willow’. Eventually, however, the anthers surmount the filaments of the stamens and reveal a vivid display of pollen from pale yellow through gold to shades of red and purple depending on the species.

BEE COLONY COLLAPSE – A CANARY IN THE MIND SHAFT?

And finally I leave you with this little video called “The Beauty of Pollination”.  The speaker is director and producer Louie Schwartzberg.  He is presenting his work as part of the TED TALKS.  His deep concern for the present bee colony collapse that is decimating pollinators worldwide caused him to take all his film making skills and present a dire message to the world.  “The destruction of the bee is like a canary in the coal mine- once the bees are gone, then the flowers will disappear. Once the flowers are gone – then we will be gone.” You cannot truly love the flowers if you do not love the pollinators. Feast your eyes on this TED TALK on

The Hidden Beauty of Pollination:

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx: The whorl of sepals on the outside of a flower is referred to as the calyx.
  • Corolla: The whorl of petals is called the corolla.
  • Filament: The filament provides support for the anther in the stamen.
  • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
  • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
  • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
  • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Ailner, J. Edward (1992) The Tree Book Collins and Brown Ltd

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Carde, Ring T. and Millar, Jocelyn G:  Editors (2004) Advances in Insect Chemical Ecology – Cambridge University Press

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Meeuse, Bastiaan and Morris, Sean ( 1984) The Sex Life of Flowers Faber & Faber, London.

Meesue, B J D (1961) The Story of Pollination, Ronald Press, New York, NY

Meeuse, Bastiaan contributior – Documentary “Sexual Encounters of the Floral Kind”  part one: http://www.youtube.com/watch?v=1Qi7Pnth_t8

Pollan, Michael (2002) Border Whores, The Times London, March 9, 2002 Viewed on the internet May 18, 2012 http://michaelpollan.com/articles-archive/border-whores/

Shepherd, Matthew (2012) Xerces Society, Portland, Oregon http://www.xerces.org/ from a private email on 5-18-2012

Shepherd, Matthew, et al. Pacific Northwest Plants for Native Bees, Xerces Society, The invertebrate Conservation, viewed on the web on 5-12-2012 http://www.xerces.org/wp-content/uploads/2010/01/pacificnw-plants-for-bees-xerces3.pdf

Weiss, M. 1991. Floral colour changes as cues for pollinators. Nature 354:227-229.

WEB RESOURCES

Websites:

  • The sexual encounter of the floral kind. A 12 part series produced by public television and based on the research of Bastiaan Meeuse. Part 1 -Video on how flowers attract pollinators.  The male wasp and the flower.

http://www.youtube.com/watch?v=Hv4n85-SqxQ&feature=relmfu

  • North American Pollinator Protection Campaign – The best website available for resources on pollination, projects for classrooms, organizations affiliated with the Pollination Protection Campaign and more. Detailed lesson plans for in the classroom with teacher guides and student guides available for printing directly off website. Availability to order posters and materials for the classroom. http://www.nappc.org/
  • Xerces Society –The invertebrate Conservation organization located in Portland, Oregon. A very valuable organization and website. Lots of resources and education material.  – http://www.xerces.org/

Next time: The Flower:  Part 3 – The Flower as healer

Read Full Post »

“The ‘Amen!’ of Nature is always a flower.”
– Oliver Wendell Holmes

I have been reading so much about flowers lately and I want to teach you what I learned as well as what I know.  So, I am going to teach about the flower in three parts.  Part 1: The history, physiology and pattern of the flowers (to help you identify flowering plants).  Part 2: Pollination and the sex life of flowers, and Part 3: The flower as a healing agent.

THE FLOWER – PART ONE

How did this happen. The flower is so different than any other tissue on the plant. The flower is a creation so beautiful and so attracting and it grows at the tip of the green or brown stem or branch of a plant. The flower is as intricately designed as if created to reflect the fractal formulas of the universe. The flower is designed to include color, shape, aroma, and chemical attractants to bring forth the pollinators so that it can complete its cycle of life: reproduction of itself.  How beautiful and how perfect it seems to us humans too. But, how is it created?  The answer is again found in the DNA of the plant and the meristem cells that drive the action in creating the plant. In this essay we are introduced to the Floral Meristem.

FLORAL MERISTEM

Last time we learned about the leaf.  We learned that the leaf was formed by the action of chemical changes and apical meristem cells.   The plant is reaching for the sun just as there is enough warmth, light, chemistry, moisture and food and creating new structures that will help it thrive.

The meristematic cells give rise to various organs of the plant, and keep the plant growing. The Shoot Apical Meristem (SAM) gives rise to organs like the leaves and flowers. When plants begin the developmental process known as flowering, the shoot apical meristem is transformed into an inflorescence meristem, which goes on to produce the floral meristem, which produces the familiar sepals, petals, stamens, and carpels of the flower. Floral meristem cells are responsible for determinate growth.  That is, they know exactly what they are supposed to create and that is the flower. And, this flower will live long enought to reproduce the plant and then die. The floral meristem cells direct the limited growth of the flower to a particular size and form. The transition from shoot meristem to floral meristem requires floral meristem identity genes that both specify the floral organs and cause the termination of the production of stem cells at just the right time. The floral meristem identity genes are “turned on” at the time the leaf meristem is turned on.  In fact some parts of flowers (bracts) are actually modified leafs. If you would like to learn more detail about this process please check out the wiki on Meristems located at http://en.wikipedia.org/wiki/Meristem

Queen Anne's Lace

THE HISTORY, PHYSIOLOGY AND PATTERN OF FLOWERS

The ancestors of flowering plants diverged from gymnosperms around 245–202 million years ago, and the first flowering plants known to exist are from 140 million years ago. They diversified enormously during the Lower Cretaceous and became widespread around 100 million years ago, but replaced conifers as the dominant trees only around 60–100 million years ago. (Wikipedia)

Non-flowering plants includes conifers, ginkgoes, ferns, cycads, horsetails, and mosses

A Flower is the reproductive structure of a tree or other plant, consisting of at least one pistil or stamen, and often including petals and sepals. According to botanist Brian Capon the flower is a short branch bearing specially adapted leaves, and reproduction is the sole function for which flowers evolved.

A land plant that flowers is called an angiosperm.  The Angiosperms are seed-producing plants like the gymnosperms and can be distinguished from the gymnosperms by a certain characteristics including  flowers, endosperm within the seeds, and the production of fruits that contain the seeds.

Flowers aid angiosperms by enabling a wider range of adaptability and broadening the ecological niches open to them. This has allowed flowering plants to largely dominate terrestrial ecosystems.

There are an estimated 352,282 unique flowering plant names, it is also estimated that there are approximately 69,500 known species of monocots and 49,500 known species of non-monocot species. The number of presently unknown plant species is thought to be 10 to 20 per cent or 20,000 to 30,000 species (Joppa, Roberts, and Pimm 2010).   The number of flowering monocot plants increased steadily for the last 250 years up until about 1850 when the number began to plateau.  There has been a steady decline in the last 50 years of known species and there are still species that have not been discovered.  The decline is due to habitat encroachment and environmental degradation.

MONOCOT VS DICOT – A REFRESHER

Monocot vs Dicot

Traditionally, the flowering plants have been divided into two major groups, or classes: the Dicots (Magnoliopsida) and the Monocots (Liliopsida).  The Dicotyledon is typically described as group of flowering plants whose seed typically has two embryonic leaves or cotyledons. The monocotyledon is typically described as having one embryonic leaf.

The Dicotyledon class has the following characteristics: – two seeds, – netted veins in the leaves, usually tap-rooted, usually complex branching, – flower parts mostly patterned in 4’s and 5’s. Example of the dicotyledon flowers would be: buttercup, rose, gentian and aster.

Monocotyledon class has the following characteristics: – one seed leaf, – parallel veins in the leaves, – horizontal rootstalks, – usually simple branching – flower parts mostly in 3’s. Examples of the flowers would be: arrowhead, lily and orchid.

FLOWER PHYSIOLOGY

Flower physiology

The parts of the flower are important to learn as the specific arrangement of flower parts will help you to identify a specific plant. There is a more complete list of flower parts with definitions at the end of this essay, but for now we will be focusing on petals, sepals, pistil, stamens, ovary, stigma, and style.

FLOWER PATTERNS OF SPECIFIC PLANT FAMILES

Mustard family – They have four free saccate sepals and four clawed free petals, staggered. The mustard family flower pattern includes 4 petals, 4 sepals, 4 tall stamens, 2 short stamens (Examples: Wild Mustard, Wall flower, Water Cress, Stock, Candytuft, and Lunaria)

The mints, taxonomically known as Lamiaceae or Labiatae – 5 united petals, (2 lobes up, 3 down), 5 untied sepals, 4 stamens (2 long, 2 short). Flower matures into a seed capsule containing four nutlets. (Examples: Horehound, Self Heal, Stinging Nettles, basil, mint, rosemary, sage, savory, marjoram, oregano, thyme, lavender, and perilla)

The Apiaceae (or Umbelliferae), commonly known as carrot or parsley family – 5 petals, 5 stamens, 2-cell ovary, compound umbels (Examples: angelica, anisewater hemlock, Water parsnip, Queen Anne’s lace, cow parsnip, parsnip, dill and fennel).

The Fabaceae or Leguminosae, commonly known as the legume, pea, or bean family – irregular flowers- 5 petals forming banner, wings and keel.  The keel consists of two petals fused together. Internal fused and free stamen. Fabaceae range in habit from giant trees (like Koompassia excelsa) to small annual herbs, with the majority being herbaceous perennials. (Examples: wisteria, pea, bean, acacia, mimosa, vetch,

Lilly or Lilium family is a genus of herbaceous flowering plants growing from bulbs, all with large, prominent flowers. – Flowers with parts in three. Sepals and petals usually identical. 3 sepals, and 3 petals (same size and color), 6 stamens, Pistil with a 3-parted stigma. (Examples: Tiger lilly, Shasta Lilly, Leopard Lilly,

Malvaceae, or the mallow family, is a family of flowering plants containing over 200 genera with close to 2,300 species.  5 petals, 5 sepals, bracts (modified leaves located at bottom of the flower), numerous stamens fused together as a column, pistil. The ovary is superior, with axial placentation. Capitate or lobed stigma. The flowers have nectaries made of many tightly packed glandular hairs, usually positioned on the sepals. The flowers are commonly borne in definite or indefinite axillary inflorescences, which are often reduced to a single flower, but may also be cauliflorous, oppositifolious or terminal. (Examples: hollyhock, okra, globe mallow, Hibiscus)

Sunflower or Aster family is an exceedingly large and widespread family of vascular plants.[3] The group has more than 22,750 currently accepted species, spread across 1620 genera and 12 subfamilies. Composites of many small flowers in disk-like flowerhead. Stigmas, 5 stamens fused around pistil, 5 petals fused together, pappus hair sepals, ovary. Even the petals are individual flowers. Each seed is produced by a single tiny flower. Multiple layers of bracts are common. (Examples: Dandelion, sunflower, asters, dahlia, Chrysanthemum, Gerbera, Calendula, Dendranthema, Argyranthemum, Dahlia, Tagetes, Zinnia).

Rose family Rosaceae (the rose family) are a medium-sized family of flowering plants, including about 2830 species in 95 genera. Roses can be herbs, shrubs or trees. Most species are deciduous, but some are evergreen.[2] They have a worldwide range, but are most diverse in the northern hemisphere. Arrangement of flowers is radially symmetrical and almost always hermaphroditic. Rosaceae generally have five sepals, five petals and many spirally arranged stamens. The bases of the sepals, petals, and stamens are fused together to form a characteristic cup-like structure called hypanthium. They can be arranged in racemes, spikes, or heads, solitary flowers are rare. (Examples of rose family includes many fruit varieties life apple, cherry, plum chokecherry as well as wild and domesticated roses)

There are several other families of flowers that I will explore in the future but for a full breakdown of all the flowering plant families check out Thomas Elpel’s book “Botany in a Day, The Pattern Method of Plant Identification”. He covers all the plant families including those I did not identify today such as : Heath family, Pyrola family, Indian Pipe family, Primrose family, Hydrangea family, Gooseberry family, Stonecrop family, Saxifrage family, Gentian, Dogbane, Milkweed, Nightshade, Morning Glory, Pholx, Waterleaf, Borage, Verbena, Plantain, Olive, Figwort, Broomrape, Bladderwort, Harebell, Madder, Honeysuckle, Teasel, Arrowhead, Arrow Grass, Water nymph, Pondweed, Spiderwort, Rush, Sedge, Grass, Cattail, Duckweed, Arum, Lily, Iris, and Orchid.

INFLORESCENCES – BRANCHING PATTERNS OF STEM OF THE FLOWER

An inflorescence is a group or cluster of flowers arranged on a stem that is composed of a main branch or a complicated arrangement of branches. Strictly, it is the part of the shoot of seed plants where flowers are formed and which is accordingly modified. The types of arrangements include: the spike, the raceme, the panicle, the umbel, the composite, the corium, capitulum and the thyrse. (Please see graphic of these patterns).

VOCABULARY

  • Anther: The anther is part of the stamen and produces the pollen.
  • Articulation: Another term for articulation is internode. Articulation describes the space between two nodes (joints).
  • Calyx:The whorl of sepals on the outside of a flower is referred to as the calyx.
    • Corolla: The whorl of petals is called the corolla.
    • Filament: The filament provides support for the anther in the stamen.
    • Floral Axis: The floral axis is the stem holding the reproductive flower parts.
    • Microsporangium: The microsprangium is located in the anther and produces microspores, which become male gametophytes. These male gametophytes will later be used in forming the pollen grains.
    • Nectary: The nectary produces nectar, a sweet liquid that attracts insects and birds for feeding. As they drink the nectar, the nearby pollen sticks to them and is transported to other flowers.
    • Ovary: The ovary houses the ovules and will become the fruit after pollination.
  • Ovule: The ovules contain egg cells and become the seeds after pollination.
  • Pedicel:The pedicel is the flower stalk.
  • Perianth: The perianth is the collective term for the calyx and corolla.
  • Petal: The petal is designed to attract pollinators to the flower and protect the stamen and pistil. Many have patterns that can be seen in ultraviolet light by bees and other insects. These indicate where the nectar is located.
  • Pistil: The pistil is the female reproductive part in the flower. It includes the ovary, style, and stigma.
  • Sepal: Sepals are found on the outside of the flower in a whorl. They are usually green. The group of sepals is called the calyx.
  • Stamen: The stamen is the male reproductive organ in the plant. It consists of the anther and filament.
  • Stigma: The stigma is the sticky surface where pollen lands and is collected to fertilize the ovules.
  • Style: The style is part of the pistil and holds the stigma above the ovary.

REFERENCES

Capon, Brian (2010) Botany for Gardeners, 3rd edition, Timber Press, Portland, Oregon

Elpel, Thomas J. (2006) 5th Edition, Botany in a day. The Patterns Method of Plant Identification, Hops Press LLC, Pony, Montana

Lucas N. Joppa, David L. Roberts, and Stuart L. Pimm,(2010) How many species of flowering plants are there? Proceedings of the Royal Society of Biological Sciences, Proc. R. Soc. B doi:10.1098/rspb.2010.1004 Published online: http://rspb.royalsocietypublishing.org/content/early/2010/07/07/rspb.2010.1004.full.pdf+html  viewed online April 26, 2012

Wikipedia – Flowering plants – http://en.wikipedia.org/wiki/Flowering_plant Viewed on the internet on 4-28-2012

NEXT TIME:  Pollination and the Sex Life of Flowers

Read Full Post »

The roots of a plant play an important role to help the plant grow and thrive. They anchor the plant in the soil; absorb water and minerals; and store excess food for future needs underground.  We are all familiar with eatable roots like carrots, beets parsnips and potatoes.  But what about the roots of native and wild plants? What are their attributes? Do they provide food and medicine?  Yes! And native plant roots are easy to cultivate and harvest.

One of the really nice things about bringing native plants back into our environments is that they are already acclimated to our local soils, rainfall and nutrient loads.  Garden soils need little work for native plants to flourish.

ROOT PHYSIOLOGY

The roots of plants have four regions: (1) a root cap; (2) a zone of division; (3) a zone of elongation; and (4) a zone of maturation.

The root cap is a cup-shaped group of cells at the tip of the root which protects the delicate cells behind the cap as it pushes through the soil. The root cap secretes mucigel, a substance that acts as a lubricant to aid in its movement. The root cap also plays a role in a plant’s response to gravity. If you were to place a young plant on its side the stem would grow upward toward the light and the root cap would direct the roots downward. Yes, the root follows gravity toward the earth’s core.  The root cap firmly drives the roots downward in most plants. So strong and persistent is this mechanism that roots has been known to break through rock, concrete and other hard surfaces. Some scientists also believe that the downward direction of the root may also be that the plant is trying to escape the sun’s radiation. (Ott 1973)

Above the root cap is the zone of division and above that is the zone of elongation.

The zone of division contains growing and dividing meristematic cells.  As we learned last time the meristem cells are very important to the design and function of a plant, they hold the DNA of the plant and create new cells for the expansion of the plant.  If something damages the meristem cells the plant will either die or be deformed.

After each cell division, one daughter cell retains the properties of the meristem cell, while the other daughter cell (in the zone of elongation) elongates sometimes up to as much as 150 times. As a result, the root tip is literally pushed through the soil.

In the zone of maturation, cells differentiate and serve such functions as protection, storage, and conductance. Seen in cross section, the zone of maturation of many roots has an outer layer (the epidermis), a deeper level (the cortex), and a central region that includes the conducting vascular tissue.

The root systems of native plants

The root of a plant provides a significant competitive edge to a plant trying to reach light. The root of a plant such as a tree provides an anchor and base as the tree stretches to the top of the forest.  In general, the deeper the root and wider it’s base, the larger the plant.

We all have experienced the stunting of plant growth when a root has not the right soil to anchor in.  The tilth and depth of the soil is important to healthy roots.

Roots uptake water from the ground.  The leaves of a plant act to channel rainfall and water to the roots which in turn absorbs it and distributes it inside the plant. The root is also very good at uptaking toxins and heavy metals.  This is why plants are so good and helping to clean up the earth. This process is called bioremediation.  This intense uptake can also make eating roots and plants dangerous to human health.  That is why it is such a good idea to grow your own food or only purchase organically grown food.  For instance potatoes grown in the toxic fields of commercial chemical farms are very contaminated.

ALL MY RELATIONS

Beneficial soil fungi (mycorrhizae) form symbiotic relationships with the tender, young roots of many species of higher plants.

Rhizoboa bacterial influence on plant roots

The mycelium fungus penetrates the root and also the soil around the root.  The fungi open up or “till” the area around the root so that its root hairs can thrive.  Mycelium collects nutrients from the soil such as phosphorus and nitrogen and uses it not only for its own benefit but that of the host plant. In return the higher plant supplies the fungus with photosynthesized foods, including sugars.  Another important symbiotic relationship between plants and fungi involves the soil bacteria rhizobium.  Rhizobium “fixes” the nitrogen around the young roots of many angiosperms especially members of the pea family (Fabaceae, formerly Leguminosae).  Rhizobium and several species of blue-green algae or cynobacteria) are able to “fix nitrogen” by converting nitrogen gas (N2) in our atmosphere into a nitrogen that is useable by the plant. The bacteria invade the root of a plant causing it to enlarge in groups of root nodules. The host plant provides the rhizobium with carbohydrates.

Frankia nodules on Red Alder roots

Another important nitrogen-fixing bacterium in our Cascadian bioregion is Frankia ahni.  Red Alder (Alnus rubra) and other types of alders are the host for this important bacterium. Alder is particularly noted for its important symbiotic relationship with Frankia alni, an actinomycete, filamentous, nitrogen-fixing bacterium. This bacterium is found in root nodules, which may be as large as a human fist, with many small lobes and light brown in appearance.  The practice of removing alders from conifer tree farms and clear cut replants has caused much damage to the eco-systems in our region.  Massive amounts of herbicides are used to kill Alders in clear cuts.  If you look at the soil after this poisoning, you will find dead, grey hard compacted soil that will take years to recover.

Over use of fungicides and herbicides in the garden and natural areas is killing off the mycelium and the beneficial bacterium that thrive on the roots of plants.  The cumulative effect of years of poison application is destroying native plant habitat.  There is much discussion about this fungi-plant relationship in Permaculture.  Permaculture looks at all the relations of living things in each community and welcomes native plants. The roots of plants found in natural undisturbed areas are a wonder to behold.

THE HAIRY TRUTH

If you look closely at the root of a newly sprouted seed you will see a fuzzy area all around the root.  These are actually root hairsor extensions of the outer root cells. The primary function of the root hairs is to increase, by several hundred-fold, the organs absorptive surface level. That is why you must be very gentle when transplanting seedlings so as not to tear off the root hairs.  You can stunt the growth of the plant for good by damaging the root hairs. (A really fast way to observe root hairs is to sprout radish seed between wet paper towels.  Radish seed can sometimes sprout in 2 to 3 days.)

Later on as the plant shoots up above the ground, the root will produce branches which will become part of the root ball.

It was once believed that the root of a plant was the brain or center and electrical nervous system of the plant.  Much research has been done to prove that while the root operates like the human heart expanding and contracting and sending out fluids and signals to the rest of the plant, there are many other ways for the plant to relay information. Much communication happens on the cellular level simultaneously throughout the plant.  The root however is a powerful distributor of chemicals, electrical charge and food storage.  That is why the root of the plant is such a complete food for animals and a very powerful medicine as well for humans and animals. Peter Thompkins and Christopher Bird wrote a book in 1973 that became a cult favorite of plant lovers.  “The Secret Life of Plants: A fascinating account of the physical emotional, and spiritual relations between plants and man.” The book offered extensive research from around the world that provided much new information for the naturalist and gardener.  The book delves into the profound relationship between root and plant, and root and man and animal including how humans foraged for plants and roots for thousands of years. Thompkins and Bird looked at the relationship between plants and human health and healing and found much evidence that wild plants resonate at a closer level to human cells energy than do cultivated plants.  (Thompkins and Bird pg 306-07)

THE ROOTS OF OLD

The roots of native plants can be extremely beneficial to human health. First peoples referred to any part of a plant growing underground as a root.  Bulbs, corms, tubers and rhizomes are often lumped into the family of roots. The term root crop refers to any edible underground plant structure, but many root crops are actually stems, such as potato tubers. Rhizomes are simply underground stems. They grow horizontally just below the soil’s surface. They will continue to grow and creep along under the surface with lots and lots of growing points. Examples of rhizomes would be lilies, irises, and asparagus. A corm looks a lot like a bulb but is the actual base for the plant stem and has a solid texture. As the plant grows, the corm shrivels as the nutrients are used up. Essentially the corm dies, but it does produce new corms right next to or above the dead corm.  If you look closely at the bottom of the corm, rhizome and bulb you will find true roots.

ROOT HARVEST

First people were very organized in their harvesting of native roots.  So important were roots as a staple crop and medicine that tribes would negotiate ownership rights to these areas.  The area was cultivated, protected, and specific rules of harvest were instigated.  The rules of harvest included making sure that the plant would come back year after year.  The root was harvested in a way that did not harm the plant or its community.  One rule was to never tear at the plant.  A sharp knife or root stick was used to cleanly cut the roots.  Another rule was never to destroy the tap or mother root.  Smaller side roots were harvested.  That way the plant could keep growing.  This was hard to do when harvesting the bulb of camas or the corm of Wapato.  However, in these cases care was taken to not overharvest an area.  The land, water and environment was to be protected. These practices guaranteed a continuous crop each season. There are all sorts of stories about the destruction of native root plants because humans were greedy in their collection practices or because acts of genocide against the First Nations of Cascadia included destroying nutritional and medicinal plants. (see my essay on Wapato)

ROOT MEDICINE OR “SKOOKUM”

The word “Skookum” comes from Chinook Jargon used as a Pacific Northwest trading language and was used by many tribes.  The word meant to be strong, powerful or having special powers.  Roots of plants were thought to be very Skookum.  Roots were harvested and dried to be used fresh or over many months.  Here is a list of my favorite native plants whose roots were harvested for food or medicine.

Plant Common Name Plant Latin Name How it was used Where it is found
Dull Oregon   GrapeTall   Oregon GrapeIn   the Barberry family Mahonia   nervosaMahonia   aquifoliumAlso   known as Berberidaceas The   shredded bark of the stem and roots were used to make a bright yellow dye for   basket materialsThe   root is a bitter herb. The root was boiled and the liquid drunk to cure   coughs and stomach disorders.  The   Squaxin, Swinomish and Samish prepared a tea of the root to be used as a   gargle for sore throat and drunk in the spring to purify the blood. Oregon   grape and its cousin goldenseal act very similarly. But since Oregon grape is
easy to grow and is not threatened with extinction, more and more herbal   practitioners are switching from goldenseal to Oregon grape to treat a range   of conditions.
Dry   to fairly moist, open to closed forests at low to middle elevations
WapatoBroadleaf   Arrowhead, tule potato, duck potato, arrowleaf Sagittarian   latifolia The Wapato tuper was eaten   raw (although somewhat bitter) or cooked. Wapato tubers were prepared for   eating by boiling, or by baking in hot ashes or in underground pits, after   which they could be eaten or dried for long-term storage or trading. The   taste of the Wapato is much like that of the potato.The tuber was an energy   food much like potatoes. Only this plant also yielded some iron, calcium,   zinc and magnesium and other minerals. It was an outstanding food when there   was a shortage of protein. It is very high in carbohydrates. Wapato   is an herbaceous wetland plant. The leaves and flower stalk rise above the   water. The leaves are arrow-shaped (sagittate). Leaf stems attach directly to   the base of the plant like celery. The base is partially submerged in the   muck, giving rise to the roots and rhizomes below.
Skunk   Cabbage Lysichiton   americanum Native   American informants and botanist Ernst Stuhr report that the root of the   skunk cabbage (Lysichitum americanum) was the main ingredient of the infamous   “Skookum” which was reported to be a blend of plants that was reputed to be a   stimulant, antispoasmodic, and emetic for bronchial and pulmonary   afflictions.  It was also used as a   salve for ringworm, swellings and inflammatory rheumatism. The root is very   bitter. Swamps,   fens, muskeg, wet forest, mucky seepage areas, wet meadows, at low to middle   elevations.
Western   TrilliumBirth root, Beth root Trillium   ovatum A tea   of the root was used as an eye wash by the Lummi and Skagit peoples.  The   root is used as an alternative medicine and is antiseptic, antispasmodic,   diuretic, emmenagogue (to promote menstruation), and ophthalmic. The roots,   fresh or dry, may be boiled in milk and used for diarrhea and dysentery. The   raw root is grated and applied as a poultice to the eye in order to reduce   swelling, or on aching rheumatic joints. An infusion of the root is used in   the treatment of cramps and a common name for the plant, ‘birthroot’,   originated from its use to promote menstruation. A decoction of the root bark   can be used as drops in treating earache. Considered to be a sacred female   herb. Moist   to wet woods, stream banks, shaded open areas; at low to middle elevations
Stinging   Nettle Urtica   dioica The   Snohomish used the shredded nettle root as a hair wash.  The root and the rest of the plant as well   as the needles and bark of the white fir were pounded together and boiled and   put into a bath to be used as a general tonic. The Quileute pound the root   and drink the boiled infusion in small amounts for rheumatism. The root was   used for yellow dye. Meadows,   thickets, open forest and stream banks.    Often found in disturbed areas. Always in moist rich soils; common   locally from the lowlands to subalpine elevations.
Fern   – Licorice Polypodium   glycyrrhaiza or Polypodium vulgare This fern rhizome has a distinct licorice   flavor is somewhat sweet. It was a favorite medicine for many people. The   rhizome is roasted by the Makah, peeled, chewed, and the juice swallowed for colds   coughs and sore throats. The Cowlitz crush the rhizome, mix it with young fir   needles, boil it, and drink the infusion for coughs. The root is demulcent,   pectoral, purgative and anthelmintic Found   on wet mossy ground, logs and rocks. Also found on the trunks of trees and   often found on big-leaf maple at low elevations.
Cattails Cattail   is a member of the grass family, Gramineae, as are rice, corn, wheat, oats,   barley, and rye, just to mention a few. Traditionally, Typha latifolia   has been a part of many native   North American   cultures, as a source of food, medicine, and for other uses. The rhizomes are edible   after  cooking and removing the skin,   while peeled stems and leaf bases can be eaten raw, or cooked.  Some cultures make use of the roots of T.   latifolia as a poultice for boils, burns, or wounds.    In early spring, dig up the   roots to locate the small pointed shoots called corms. These can be removed,   peeled, and eaten, added to other spring greens for a salad, or cooked in   stews or alone as a pot herb. As the plant growth progresses to where the   shoots reach a height of two to three feet above the water, peel and eat like   the corms, or sautee. Root starch is harvested until late spring. The starch   is made into flour.  The root can also   be made into a natural sweetener.  The   root contains vitamin C, A and micronutrients. Marshes,   ponds, lakeshores, and wet ditches, in slow-flowing or quiet water; low to   middle elevations

VOCABULARY

Angiosperm (an·gi·o·sperm). noun. Botany. a plant that has flowers and produces seeds enclosed within a carpel. The angiosperms are a large group and include herbaceous plants, shrubs, grasses, and most trees. Compare with gymnosperm.

Phlo.em (fl m ). n. The food-conducting tissue of vascular plants, consisting of sieve tubes, fibers, parenchyma, and sclereids. Also called bast.

REFERENCES

  • Capon, Brian (1990) (Revised  3rd edition, 2005) Botany for Gardeners, Timber Press, Portland, London
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Ott, John Nash (1973)  Health and Light – The effects of Natural and Artificial Light on Man and Other Living Things. Old Greenwich, Conn. Devin-Adair
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  • Tompkins, Peter and Bird, Christopher (1973) The Secret Life of Plants: A fascinating account of the physical emotional, and spiritual relations between plants and man.  Perennial – HarperCollins Publishers, New York, NY
  • O’Shea, Ellen “Honoring our ancestral plants: Wapato” (2011)  https://radicalbotany.com/2011/02/21/honoring-our-ancestral-plants-wapato/

Read Full Post »

Mt. Rainer and Native Lupines by Ellen O'Shea

In 2012 I will strive to educate others to be able to go into any natural area and not only identify, but bring native plants back into their lives. I will teach others to be naturalists. I will teach the basics of botany. I will tell stories of transformation.  In your journey to become a native plant naturalist I will teach you to journal, observe, illustrate and forage. I will teach you to move the native plants back into your close environment and to start using them for food, medicine, utility and to rebuild wildlife habitat.  I will ask you to go outside at least once a day and observe, deeply observe a plant.

I promise to post to this weblog at least every two weeks and to use the following formula when I post:

  1. Short essay on a subject related to native plants.
  2. Education about a Naturalist who has greatly influence native plant education in our bioregion.  I will Include the name, area of concern, quotes from their work and links to more information. I will be writing about people who loved the earth and want to protect it.  Many times they left the wilderness because they knew unless they educated the masses about the beauty and sanctity of the wild place, it would be lost to industrialization and environmental degradation.   Here is a list of just a few of the people I will be writing about: Johnny Moses, Lelooska,Mourning Dove [Christine Quintasket],  Aldo Leopold, Celia Hunter, Gary Snyder, Terry Tempest-Williams, John Muir, Julia Butterfly-Hill, Henry David Thoreau, Lilla Leach, Edward Abbey and others.

3.  Native plant of the month – including where to find, how humans and animals have interacted with it in the past, how it benefits the local and regional ecosystem and how to propagate it so that humans can bring it back into local ecosystems.

4.  Botany lesson- starting from the beginning.  Learn botany – one step at a time. Included will be lessons on finding, observing, illustrating, nature journaling and propagating native plants.

5.  References and links – lots of them

Blessings to all in 2012 – welcome to the new earth.

Read Full Post »

Older Posts »

%d bloggers like this: