Feeds:
Posts
Comments

The Spring Mouse is

running, jumping

in love with the world

-          Ellen O’Shea (Spring of 1978)

Indian plum berriesIt is early spring.  How do I know?  The days are getting longer, the temperatures are rising just a bit.  The daffodils are blooming.  The red-wing black bird and hummers have returned.  And, the Indian-plum is blooming in the forest.

For the past few months I have been writing about some of the native deciduous trees of the Cascadian bio-region.  Indian plum is listed as being a shrub or small tree by some native plant botanists (Pojar and MacKinnon).  So I will be diverging somewhat on my original goal to teach you about what I think are the ten most important deciduous trees for now.

It is said that those who live close to nature let her lead us through the seasons, through time and through dimensions of reality. Indian plum opens the door to spring like no other plant in the Cascadian forest.

Indian-Plum or Osoberry is a plant that I spend several months watching closely because it Indian plum branch of flowersannounces the coming of spring and the coming of the pollinators. Its lovely buds are the first to appear in the forest.  The flower comes early allowing the bees to survive the long winter.  And I am given hope that the hours of sunlight will become longer. It is a barometer that shows how close we are to spring and thr renewal of the forest and all the lands. It often appears with Red flowering Currant (Ribes sanguineum) another pollinator favorite.

NAME

Chehalis – t’ saxwani, whole plant, the berry was called t’saxwa

Lummi – molxwu’n

Quinalt – tekadja’nt, “coffee berries”

Samish – t’sxuni’ltc

Skagit – siqwad

According to Erna Gunther a Ethnobotantist from the 1940’s and 50’s, the plant was named Osoberry by early Spanish explorers to the Cascadian bio-region. A Spanish name for Bear was Oso.  Spanish soldiers and Spanish catholic priests who came to Cascadia years ago saw bears eating the fruit and so they named the plant Osoberry (Gunther p.37).

Oregon plum, Indian peach, and bird cherry are also synonyms.

Also known as Osmaronia cerasiformis

PLANT

Indian-plum is a fast growing but relatively short-lived perennial deciduous shrub or small tree of 6 to 16 feet. An attractive deciduous shrub to small tree , a green woodsy plant that resembles a pussywillow until it flowers or fruits.  It said if you rub the leaves together there is faint smell of watermelon.

FLOWERS

Indian plum open flowerGreenish white flowers approximately 1 cm across. 5 petals, 15 stamens in distinct series somewhat bell-shaped, appear often before the leaves in very early spring. The flowers hang in 5 to 10 cm long clusters.  Flowers are like many natives, usually males on one plant and females on others, except on good years (or maybe bad years?) then you will find both on the same plant. The female plant produces flowers that smell like watermelon, and this plant produces the fruit.  The male flower is said to smell something like cat urine. Indian-plum flowers at the same time as the genus Ribes which  includes the edible currants (blackcurrant, redcurrant, whitecurrant, gooseberry, and several hybrid varieties).  These plants attract the same pollinators.

HABITAT

Often found with an overstory of Douglas-Fir, Western Redcedar  or  Cottonwood. Found in dry to moist, open woods, streambanks, roadsides: found in lower elevations. If growing in a more sunny location it will develop more dense foliage and have more flowers and fruit.

Indian plum is native and common at lower elevations from extreme southwest British Columbia to Oregon’s Willamette Valley and surrounding foothills. Continuing south, it becomes less common in the California Coast Ranges to Santa Barbara County and western slopes of the Sierra Nevada Mountains to Tulare County California.

This plant spreads slowly, mostly by root suckering. Although Indian plum seed is dispersed by many birds and mammals, it requires a disturbed site in order to become established.

PROPAGATION TECHNIQUES

Seeds can be collected and sown outdoors in the fall or spring. Germination of spring-sown seed is more successful if the seeds are first given cold treatment or stratified. Place seeds in a bag of moist peat moss and store them in the freezer for four months. Half-ripe cuttings, taken in the summer are often successful. Suckers can also be removed from the parent plant during the winter months, and will survive on their own provided great care is taken.

MEDICINE, FOOD AND UTILITY

The berry  or plum was eaten by the First Peoples in small amounts. They were sometimes dried and combined with other wild berries to make a dried fruit leather. The fresh fruit was gathered as people walked through the forest and was only dried to use as a starvation food (Gunther p.37).  The dried berries were eaten in the winter time. The Saanich made a bark tea as a purgative and tonic (Pojar and Mackinnon p. 72)

Indian Plum has a analgesic quality to it and the Kwakiutl created a poultice by chewing, and burning the plant and oil and then applying to sore places (Moerman p. 360). A tea of the bark was used as a laxative. The bark was stripped to make harpoon hooks and other utility items.

Many Cascadian tribes ate the berries fresh with oil at an evening meal. They were often mixed with wild currants.

Indian plums have been used to make wine.  They lack sweetness and are sometimes mixed with Red Currant and other sweeter fruit in the winemaking process.

WILDLIFE

This plant is very important to pollinator and animal survival.  The shrub is one of the first to flower in the spring and is therefore an essential food for bees and other early bee on indian plumspring pollinators.  It is said that the wild and honey bees come for the Indian -plum and stay on for all the other plants starting to bloom.  When this plant is missing from the forest, many bees do not show up in time to pollinate later flowering plants.  Interesting that this plant is the first to bloom and one of the last to set fruit in the summer. It is to be noted that Indian-plum cannot self-pollinate.  If the bees and other pollinators disappear from our eco-systems, so too will the Indian-plum disappear.honey bee on indian plum flower

The berries are essential food for squirrels, birds and other forest dwellers. Various small mammals plus foxes, coyotes, deer, bears, and many bird species consume the ‘plums’ and disperse the seed. (USDA NRCS plant fact sheet)

Early hummingbirds are attracted to the tubular flowers of the Indian Plum.

 

 

A SPRING GIFT TO YOU!

A video of the spring SONG OF THE RED-WINGED BLACKBIRD. If you listen carefully you will hear geese, and other birds singing beautifully because it is spring!

REFERENCES

  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Stuhr, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  • USDA NRCS Plant fact sheet:  INDIAN PLUM Oemleria cerasiformis (Torr. & A. Gray ex Hook. & Arn.) Landon  Plant Symbol = OECE  Contributed by: USDA NRCS Corvallis, Oregon Plant Materials Center  viewed online on March 17, 2013 -http://www.plant-materials.nrcs.usda.gov/pubs/orpmcfs9127.pdf

Earth’s the right place for love:

I don’t know where it’s likely to go better.
I’d like to go by climbing a birch tree,
And climb black branches up a snow-white trunk
Toward heaven, till the tree could bear no more,
But dipped its top and set me down again.
That would be good both going and coming back.
One could do worse than be a swinger of birches.

Excerpted from Robert Frost – “Birches”

white birch grove

White Birch Grove

Preparing to write about these lovely deciduous trees has been quite a journey.

I have found that what I know is only the tip of the iceberg of what I need to know.  The White or Paper Birch is a tree that I am slowly becoming familiar with. My early relationship was one of taking for granted that this tree would always be here for me to sing to, climb and use as crafting materials.  I did not ever imagine these lovely fast growing groves of trees could be used to heal, attract some of the most powerful healing fungi in the world or that they would one day be imperiled.

My father was a land surveyor and he sometimes took me and my siblings along for the day on his forays into the forested areas of Oregon. On a early summer day many years ago he took us on a walk along a coastal mountain stream.  The White Birch was plentiful and lovely.

We came upon a White Birch which had a broken branch half hanging.   He took some of the sap dripping from the broken tree, spread it over the wound, and then he took the shedding white bark for which it is known and used it to tie the branch back in place.   This is just one of the “signatures” of this tree.  Later I would learn that birch bark was used to set into a cast, the broken bones of humans.  On that day long ago, my father gave me some of the sap to chew and told me that it would be good for my teeth and mouth.  It was sweet and tingled in my mouth. I asked daddy about the bark.  I asked if I could remove some naturally occurring shedding white bark without white birch hanging barkharming the tree.  He told me that in other parts of the country, the bark was used to make canoes and to line baskets and wrap food and that it had probably been used as paper somewhere in the world. He told me there was time of year in the late spring and early summer when the bark was easy to remove without harming the tree.  He told me the tree sap was very healing as was the bark and that is why he used it to repair the broken limb.

Later I used some of the bark to make clothes for my doll and I made a small pouch to hold special things.  I made a small canoe that I could push across our pond.   I found sanctuary in the birch grove and sat in silence to watch the wild birds skip from branch to branch.  In late summer the tiny rounded samara became part of my secret cache of wild seeds.

This was my introduction to White Birch.  It was easy to interact with the community of birch. I can imagine now that it is this easy relationship to the tree and bark that attracted the First People. It is also easy for humans to take this tree for granted, not respect it.  As you will read, the White Birch is a powerful healer for both human and forest communities. It is a tree that welcomes the fungi mat (mycelium) and heals the wounds caused by fire, humans, disease and floods.

Betula papyrifera (Paper Birch, also known as American White Birch and Canoe Birch) is a species of birch native to the northern part of North America and the southern part of Canada.  The species birch is found all over the world.

PREPARING THE WAY – Birch, Alder, Aspen

Some trees are steady and slow in growth reaching to the tops of forests they create an umbrella for the web of life.  And, some trees are pioneers, growing fast, living a short time and creating a birthing platform for many other species. The White Birch is a pioneer species. The stands of White Birch come on fast and can grow only to about 20 meters high (65 feet). A healthy tree can live to be 40 or 50 years old. During their growth the pollen from birch catkins attract a great many pollinators that will bring life to other plants in the forest. The sap and bark attract a great many fungi that live symbiotically on the tree.  The fungi are then dispersed into the disturbed soils to help create the forest mycelium mat.  For a long time scientists and foresters thought the fungi found on the birch were a sign that the tree was dying.  They thought the fungi were killing the tree.  Now we know that the birch is a nurse tree to a great many beneficial fungi. It chooses which fungi will inhabit it and also has a chemical defense method that will trap certain fungi in the heartwood or on the outer barks.   The sap actually has pesticide qualities.  It detracts insects such as termites and certain bacteria that might do the tree harm. According to Grieve in her book A Modern Herbal, Birch tar was used to repel insects (p. 103)

Like the Red Alder and Aspen, the White Birch lives in symbiotic relationship with nitrogen-fixing bacterium.  This relationship is called mutualism. In mutualism: plants gain nitrogen compounds, the bacterium gains carbohydrate and an environment with reduced oxygen. The plant then changes carbon dioxide to oxygen and releases it for human use.

White birch as a pioneer deciduous species is often found in groves on the edge of newly formed second-growth tree communities or near the edges of changing forests. This tree shows up in ecosystems that have been disturbed by fire, flood or human decimation.  They can be found in open or dense stands of forest usually in an opening. They can be found in lowlands to lower mountain slopes in drained sites or along bogs and other wetlands.  B. papyrifera requires high nutrients and sun exposure.

These trees do not live long. From the time they spring up and then die, can be as little as 20 years or as much as 50 years. It is easy to propagate and the young saplings are often found spouting from a cut stump.  Like the Red Alder, the White Birch is a very important part of establishing the mycological forest community. Without these forerunners of forest health, there would not be a fertile soil and microbiological environment that would support the deep wild forest.

NAME

The name is a very ancient one, probably derived from the Sanskrit bhurga, ‘a tree whose bark is used for writing upon’ (Grieve, p. 103).  The First Peoples of the Cascadian bio-region have names for this tree also:

Salish = âîçêáÛ – birch bark

âîçêálî, îçêá white birch, paper birch, birch bark.

paper birch îçæálî, îçæá birch; paper birch.

The English name is White Birch, Paper Birch or Canoe Birch

The Latin botanical name is: Betula papyrifera

LEAF

white birch leafThe leaf is alternate, deciduous, oval to round and sharp-pointed. The leaf of the White Birch can be longer when on young trees. The color is dull green above and paler and hairy below.  The margins are doubly toothed. (Pojar and Mackinnon p. 47)

Learning the shape of the leaf is important because there are other trees that grow in similar environments that look much the same when young.  For instance bitter cherry has a similar bark and structure but the leaf is oblong to oval, and less pointy.

The FLOWER AND THE SEED

The flowers, and thus the seeds, of white birch are arranged in a pendant cluster about an inch long which is referred to as a catkin. Male white birch leaves-catkins-conesand female flowers are on separate catkins. When pollinated, the female flowers develop seeds, each of which is located on a scale in the catkin.

Male and female flowers grow in separate catkins and flower at the same time.  Sometimes there will be young leaves emerging as the tree flowers. The buds for the male catkins appear in autumn, when it begins getting cold.  During spring, the tassel-like catkin will produce yellowish or grayish green flowers that produce pollen with an aromatic scent.

Over the winter the catkins disintegrate, dispersing both seeds and scales.  You can identify the species of birch from the shape of its scales or nutlets.  Again, the white birch nutlet is round with wings that are broader than the body.

The male catkins will fall away from the tree, while the female catkins will form into cones in the summer. These cones vary from a deep brown to a tan, though they may also have a reddish color to them. During late summer, the cones will open and in autumn, the cones will fall, spreading their nutlets across the ground. The nutlets are then dispersed on the wind.

BARK

The tree is most familiar to us humans because of its bark.  The bark peels in papery strips in late spring and early summer. The bark of this tree is commonly thought of as being white or grayish white, but also comes in yellowish or dark gray.  It is often marked with brown horizontal lines of raised pores. The bark is highly weather-resistant. The wood itself is highly flammable and can be burned as firewood even when damp.

MEDICINE

Birch syrup is a sweetener made from the sap of birch trees, and used in much the same way as maple syrup. It is also used as medicine syrup.  The sap is boiled down to produce birch syrup.

The same sap is fermented to make beer and wine.  Birch beer is very popular in Northern Europe and a few areas of North America.

The oil is astringent, and is mainly employed for its curative effects in skin afflictions, especially eczema, but is also used for some internal maladies. Oil of wintergreen is distilled from its inner bark and twigs (Meyer p. 15)

The inner bark is bitter and astringent, and has been used in intermittent fevers. The bark is ground to a fine power and used to treat diaper rash.  It is also used internally to treat a great many inflammatory and bacterial infections.

The vernal sap is diuretic. The resin contains zylitol, a disinfectant used as a natural tooth cleaner. However, it may also contain terpenes. Used in making turpentine, terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. It was also reported that those who chewed the resin could get somewhat of a “buzz” (Pojar and MacKinnon p.47.

One of the chemicals that has been isolated from birch bark is called betulin. Betulinic acid, which is made from betulin, is being studied as a possible cancer treatment. Betulin has also been found in many other plants.

White Birch is used on the skin to treat warts, eczema, and other skin conditions. Promoters say that birch tea can be taken internally as a diuretic or a mild sedative and that it can be used as a treatment for rheumatism, gout, and kidney stones. The leaves are sometimes used on the scalp to help with hair loss and dandruff. Birch tar (oil distilled from birch bark) is used on the skin for skin irritations and parasites. Other claims for birch bark include the treatment of diarrhea, dysentery, and cholera.

WHITE BIRCH AND THE POWERFUL FUNGI CHAGA (THE TINDER CONK)

Chaga conk on a White Birch

Chaga conk on a White Birch

White Birch Moxa

Before I started this study of the White Birch, I did not know that the First Peoples in Cascadia used Moxabustion.  Moxibustion is the application of heat resulting from the burning of a small bundle of tightly bound herbs, or moxa, to targeted acupoints on the human body. The burning plant material is traditionally mugwort.  It is sometimes used along with acupuncture.  It is used to open up or move energy in a part of the human energetic body. It is well-known that for thousands of years far-eastern cultures have used moxabustion as part of their healing regimes.  What I was not aware of was that the First Peoples of North America, Central America and South America also use Moxibustion.  As I studied the White Birch I came upon a quote that perked up my inquisitive nature.  The book is called A Modern Herbal published in 1931 by Mrs. M. Grieve.  Grieve reports that birch leaf and bark was used as a moxa, and that it was burned on top of a fungi.  Both the birch parts and fungi were used to create a moxa for healing. Here is a quote from Grieve’s published works.

“Moxa is prepared from it and regarded as an effective remedy in all painful diseases. A type of moxa is made from the yellow fungus that is excreted from the wood of the White Birch, which sometimes swell out from the fissures of the bark” – Grieve p. 104

After some research I found that there are several types of fungi that are yellow and live in the fissure of the White Birch.  It is a tree that attracts fungi as it ages. Here is short list of some of the edible and medicinal fungi that grow on birch.  Ganoderma applanatum, or artist’s conk, Oyster mushroom (Pleurotus ostreatus), Turkey tail (Trametes spp.) attacks fire-scarred, wounded and drought-, freeze- or sunburn-stressed birches. Hairy (T. hirsuta) and colored (T. versiclor) turkey tails, Lenzites betulina, commonly called birch mazegill, Yellow Brain fungus and Chaga (Inonouts obliquus). According to Paul Stamets, most of these fungi have several medicinal properties, including antioxidant, antimicrobial, antitumor, and immunosuppressive activities. (Stamets 2005)

There are so many fungi attracted to the White birch that I would only be able to identify which was used as a moxa by contacting an expert.  But, there are clues.  It is yellow; it is used for burning as a moxa.   Was the fungi Chaga (Inonouts obliquus) also called Birch Tinder fungus Grieve’s moxa?  Chaga has a somewhat yellow underbelly.

I found several books that stated that the First peoples burned plants for many reasons; healing, food, spiritual connection, and fire carrying. It is well know that the First Peoples of all cultures across the globe including those of Cascadia burned plants as a method of reconnecting spiritually to the natural world.  They smoked and burned plants for healing and for ceremony. And they used the burning of plants as a method of healing via moxabustion.  One method of releasing essential oils in a plant or bark was to burn the plant, or place it on burning material and let the spark ignite the essential oils of the plant.  This method was often used to help healing substances connect with hard to reach areas of the body, such as cartilage and deep tissues.  My investigation found that in the practice of shamanism, moxabustion was essential to the healing process.

Let’s look at Chaga and its relationship with the birch.

Many mushrooms prefer a particular wood for their growth because they need the nutrients and conditions that they can get from that wood. Some form symbiotic relationships with certain trees, as the chanterelle does with birch, but many also feed on dead, decaying wood. There are also mushrooms that parasitize birch trees and which will kill weakened trees, such as the birch polypore (Piptoporus betulinus), a shelf fungus with an interesting history.

Chaga, a fungus in the Hymenochaetaceae family is in a symbiotic parasitic relationship with birch and other trees. The sterile conk that is Chaga is irregularly formed and has the appearance of burnt charcoal. Chaga was called the Birch tinder fungus because it was used as a means of carrying fire from one hearth to another.  The fungus was lighted and it carried the ignition spark.  Chaga was also used as a moxa hearth.  Plant material was placed on top of a burning ignited Chaga.  Together the Chaga and the burning plant created a moxabustion of healing aromatic substances. According to Paul Stamets the First Peoples used these fungi as a natural antibiotic, anti-inflammatory, and immunopotentiator as well as a practical fire-starter mushroom. (Stamets – Mycelium Running p. 258)

Finally I found a research paper published in the Journal of Ethnobiology in the summer of 1992 titled “Short communication – Use of Cinder Conk (Inonotus obliquus) by the Gitksan of Northwest British Columbia, Canada.

The author Leslie M. Johnson Gottesfeld writes:  “Cinder conk had two principal uses: for moxibustion treatment of swollen athritic joints, and as tinder or a slow match for making and transporting fire.”

Further she writes the Gitksan elder had two words for cinder conk: mii’hlw and tiiuxw. A Gitksan elder describes cinder conk and its medicinal use as follows:

“Mii’hlw-the black growth from the crack in the birch tree. Like yellow cotton inside. If you cut it off, use the yellow cotton stuff. Take a sliver like a match stick and burn it for pain in the joint.” According to the elder, after the sliver of cinder conk was burned near the skin on the affected joint, a special salve was then applied to the burn wounds. This treatment was reported to be effective in reducing the swelling, and presumably the discomfort, of the joint. ( Johnson Gottesfeld p. 154-55)

I love this much endangered fungi and birch that it grows upon.  And so do others who value it for its healing abilities.   Paul Stamets reports that wild harvesters for the nutraceutical industry are decimating the White and Yellow Birch populations of North America and Europe as they walk through the forest with machetes chopping the fungus off the tree and causing life-threatening damage to the trees.  The removal of the mother-chaga is also removing the spores from the forest (Stamets, October 2012).  The Chaga communities are becoming rarer as are the birch forests.

Stamets is trying to remedy the situation by teaching the nutraceutical industry and others to grow Chaga in growing houses on birch and other forest product chips.  He is also asking that the industry stop buying from foragers. Here is a link to a short video about conservation efforts to save the Chaga and the birch.

The trees are dying for a second reason:  Birch trees are especially sensitive to herbicides because they have a shallow root system. The herbicides are also decimating the beneficial fungi that live in symbiotic relationship to the birch.

UTILITY – CANOES AND BASKETRY

The White Birch is also called the Canoe Birch. In the Cascadian Bioregion (Pacific Northwest), some canoes were built as large as one

Canoe building - inland waters of Pacific NW

Canoe building – inland waters of Pacific NW

hundred feet long and seven feet wide, and could hold up to sixty people. Bark canoes are constructed of sapling frames covered in bark. Birch bark is very popular for both its durability and its relatively light weight. The birch bark is an outer covering spread over a frame (ribs and gunwales) made of flexible wood such as red or white Cedar. The canoe of the First Peoples was extraordinarily light and graceful. When new and dry, a 15-footer might weigh less than 40 pounds; the longer ones, made by some tribes, weighed about 75 pounds. One man could pick up a canoe and carry it, upside down and resting on his shoulders, over a long rough portage. For its size and weight, it had greater carrying capacity than almost anything that floats. A birch bark canoe could carry almost a ton of load and it is said that a 15-foot canoe was often used to transport an Indian Family with several children, plus all of their duffel and dogs. (Nature Bulletin)The Birch bark has been used to make baskets for thousands of years. There are myths about these baskets that have been retold to the basket-making societies. The birch basketry was used to make many helpful containers.  Panels of bark were also be fitted or sewn together to make cartons and boxes (a birchbark box is called a wiigwaasi-makak). The bark was also used to create a durable waterproof layer in the construction of sod-roofed houses.

Video – Cool things in nature:  Paper Birch Tree

REFERENCES

  • Birch Bark Canoes – Nature Bulletin No. 463-A   September 23, 1972
  • Forest Preserve District of Cook County viewed on the internet 1/20/2013 – http://www.newton.dep.anl.gov/natbltn/400-499/nb463.htm
  • Doctrine of Signatures – plant signatures – http://en.wikipedia.org/wiki/Doctrine_of_signatures viewed on the internet 1/22/2013
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Grieve, Mrs. M. (1931) Modern Herbal – The medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, fungi, shrubs and trees with all their modern scientific uses, 2 volumes, Harcourt, Brace company; reprinted by Dover Publications, NY in 1971.
  •  Johnson Gottesfeld , Leslie M. (1992) Short communication – Use of Cinder Conk (Inonotus obliquus) by the Gitksan of Northwest British Columbia, Canada. Journal of Ethnobiology, 12(1):153-156 Summer 1992
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London, pp.38
  • Pojar and MacKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia and Alaska, Lone Pine Publishing, Vancouver, BC
  • Stamets, Paul (2005) Mycelium Running- How Mushrooms can help save the world, Ten Speed Press, Berkeley, CA pgs 203-205.
  • Stamets, Paul “Chaga, the Clinker Fungus: This Mushroom Looks Scary But Can Benefit Health – October 25, 2012 – Huffington Post – http://www.huffingtonpost.com/paul-stamets/chaga-mushroom_b_1974571.html
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.

“Perhaps you have noticed that even in the slightest breeze you can hear the voice of the cottonwood tree; this we understand is its prayer to the Great Spirit, for not only men, but all things and all beings pray to Him continually in different ways.”- Nicholas Black Elk (Hehaka Sapa) , from The Sacred Pipe (1953)

Cottonwood treeEvery spring the Black Cottonwood disperses it white fluffy seeds upon the world. As a child growing up in Oregon I loved to walk in the cottonwood snow drifts.  I looked up into the sky and watched the fluffy seeds twirl and dance above me.  Wind driven the seeds cannot survive in the shade of their parent and so they seek their fortunes floating and spilling over into every biome of Cascadia.  I am always surprised when the humans around me complain of the mess or the possibility of allergies.

I hear the other humans calling the Black Cottonwood a nuisance or a tall weed.  I want to tell them that this tree is in fact a bearer of great healing.  Research shows that the Cottonwood tree seeds are not the bringer of sneezes and sniffles, but the healer of such maladies.  The tree just happens to disperse its seeds at the same time that other plants release their pollen.   The Balm of Gilead hides in the buds of the great cottonwood and the bark and twigs heal all manner of pains and inflammations. The resins of this tree feed the bees and butterflies and the resin is collected by bees to protect the hive.

cottonwood fluff in forest

Cottonwood seed dispersal

Black Cottonwood make millions of seeds, usually in the last week of May and the seeds are dispersed on the winds- casting themselves as far from the mother tree as possible. The fluffy seeds can travel 20 miles on a breeze, they can be carried on streams and rivers and rest in a vernal pool.   Within 24 hours of hitting its mark, the seed will sprout.  So strong is the need to propagate, even a fallen branch will sprout where it comes to rest.

The species is native to western North America, and is a coastal species ranging from Alaska to California and as far inland as the Rockies.  It is often found on flood plains and is known to extract water up through it roots to control flooding in many areas.  Cottonwood will plant itself and take root where few other trees will grow.  They take root in pure sand or gravel along riverbanks.

BARK

The bark of the mature Black Cottonwood is deeply furrowed, dark grey with young shoots often angled in cross-section.

LEAVES

Cottonwood leaves and seed fluffThe leaves are alternate, deciduous, thick and oval with heart-shaped base and sharp-pointed tip. FLOWERS Male and Female flowers in catkins, on separate plants; male flowers with 40-60 stamens, female flowers with 3 stigmas.  The tree flowers before leaves open up.

FRUITS

The fruits are round, green, hair capsules that split when ripe into 3 parts.  The seeds are covered with white, fluffy hairs that help propel them through the air.

NAME

Chehalis – ne.’k’w! Cowlitz – xu’pxp

Green River – q’wde’’q’ats

Quinault – kalle’tsalx Squaxin – stsa’pats

(Populus balsamifer ssp. Trichocarpa)

“Populus” means the peoples’ tree.  This scientific name comes from the fact that cottonwood has proved to be so useful over the centuries.  Many parts of the cottonwood tree are medicinal. A compound called salicin, which is found in the leaves, buds and bark of cottonwood, has been proven to lower fevers and reduce inflammation and pain.  The resin has been used to waterproof boxes and baskets, and the bark has been used to make buckets for storing and carrying food.

THE ROOTING HORMONE ELIXAR

Black Cottonwood contains a large amount of rooting hormone, just like willows, so it is be useful for plant propagation.  Both Cottonwood Trees and Willow Trees produce their own rooting hormone, called auxin. Also like willows, leaf buds contain salicin which is a powerful anti-inflamatory and pain-reducer.

Making a rooting compound with Black cottonwood in 5 easy steps!

  1.  Take cuttings from a Black Cottonwood tree. Use a sharp pair of pruners or scissors and cut twigs that are less than a half inch in diameter.
  2.  Strip away all the leaves and throw the leaves away. Cut twigs into short pieces (1″-2″ long) and place into a pail.
  3.  Boil as much water as will cover your cuttings. Pour the boiling water onto the cuttings and leave overnight.
  4.  Remove twigs. Save in an airtight container in the fridge until you are going to use.
  5. To use – Get the cuttings of the plants you want to root. Remove any leaves that would be in the rooting area (you don’t want leaves to soak in the rooting hormone). Place your plant cuttings into the rooting hormone (only the bottom portion of the stems) and let soak for a couple hours, then plant in a pot with soil and care for as usual. An easy way to use the cottonwood as a rooting helper is to put cuttings of the plants you want to root in a bucket or vase with newly cut cottonwood cuttings.  This will also cause the other plant to root.

BEES AND THEIR PROTECTOR GLUE

In the spring, bees chew the resin from the cottonwood and digest it with their own enzymes to make bee medicine and glue called bee collecting resin1Propolis.  Bees collect the resin which is an anti-infectant, for their hives and seal intruders (such as mice and other invaders) in the resin to prevent decay and protect the hive (Pojar and Mackinnon p. 46).   The bees use the resin as a type of bee glue. The glue is thought to be very antibacterial and inhibits microbes that constantly threaten the environment of the hive. Some bees also collect the resin of the cottonwood to use as both an adult and larval food source.

FOOD FOR BUTTERFLIES

Many kinds of animals use the twigs of Populus balsamifera for food. The leaves of the tree serve as food for caterpillars of various Lepidoptera. (Butterflies, moths and skippers).

BALM OF GILEAD – DEEP MEDICINE

“There is a Balm in Gilead, To make the wounded whole,”-traditional African American Spiritual

Black Cottonwood bud with resin

Black Cottonwood bud with resin

The biblical Balm of Gilead is nearly indistinguishable from bee propolis; Balm of Gilead is made of resin from various poplars, including P. balsamifera, P. nigra, and P. gileadensis.”-Broadhurst and Duke 1998

The Balm of Gilead is mentioned in the Christian bible and the Torah.  It was a substance collected from several varieties of Middle Eastern and East African trees and was said to have many curative powers. The ‘balm of gilead’ of the Bible is a resin-exuding tree related to myrrh (Commiphora myrrha), frankincense (Boswellia spp.) and possibly Commiphora meccanensis. The resin was extracted and revered as a great healing salve.  It was burned at ceremony as it was thought to heal the soul and protect it from dark sources.

Most propolis research focuses on resins from forests where bees collect mainly from the poplar (Populus) genus and, to a lesser extent, beech, chestnut, birch, and conifer trees. Chemical analyses indicate that the bees’ propolis is almost chemically identical to these tree resins and is similar to medicinal gums such as boswellia and myrrh.

The balsam is not water soluble, so it is necessary to extract it either with fat, by macerating it in oil or cocoa butter in a warm place (do not boil, otherwise the buds might get burnt), or to prepare an alcoholic extract (tincture). It should be noted however, that some people develop an allergic reaction, which is more common with the tincture than with the ointment. This is probably due to the salicylic acid that is extracted in alcohol, but not in fat. So, if you are allergic to aspirin, you will probably react to Balm of Gilead tincture as well.

This resin when turned into propolis by bees contains a medicine that eases sore muscles, arthritic joints and helps to heal damaged skin. It contains substances that are known to inhibit the growth of cancerous cells (caffeic acid phenethyl ester-CAPE) (Broadhurst and Duke – 1998) When to Harvest:  Buds appear on cottonwood trees from late winter to early spring. You can smell the fragrance in the air on the first warm days.  Just before they open, the leaf buds will exude a drop of red to yellow colored resin. When you pinch the buds and see resin inside, it is the perfect time to gather them.  You will notice that some of the buds have catkins inside.  These do not have as much resin and are less preferred for medicine than the leaf buds. Herbalist Gregory Tilford suggests collecting the buds from lower branches and soaking them in alcohol to release the resin.

MAKING COTTONWOOD BUD OIL-YOUR OWN BALM OF GILEAD

You will need: extra virgin olive oil (enough to cover the buds), a double boiler, a blender (only if you are making a large amount), a Infusing olive oil with Balm of Gilead buds.pressing cloth like muslin, a strainer and a glass jar for long-term storage.  If you do not have a double boiler you can create your own by placing a small pot in a larger pot with an inch or two of water in the bottom pot.

  •   Step 1 – Do not wash the buds -blend or pinch open the buds.  This will help the resin to more easily release into the oil.  If you have a small amount you can simply pinch the buds with your fingernail.  Place directly in a double boiler and cover completely with olive oil.  For larger amounts, using a blender will save you a considerable amount of time.  First, place your buds in a double boiler and cover them with olive oil so they are fully covered ½ to 1 inch above the buds.  (If you put the buds in the blender directly without oil they will stick to the sides and your clean up will be much more challenging.)  Pour oil and buds into the blender.  Turn on and blend just until the buds are mostly broken open.  Place back in the double boiler.
  •   Step 2 – Gently heat.  Heat on a very low setting.  Do not allow the olive oil to get hot enough that it boils!  I place my oiled buds near my heater and keep it warm without a stove top.   Heat for several days.  The oil will turn a deep golden color and become very fragrant.
  •  Step 3 – Press out the oil.  Lay a piece of muslin cloth over a strainer that is sitting on a container.  Pour a couple of cups of buds and oil into the muslin, bundle it up, twist the cloth and squeeze with all your might.  Once oil stops dripping, empty the buds into a compost container and continue pressing until done.  Let the pressed oil rest for an hour or so.  If there is any water or solid material it will fall to the bottom of your container.
  •  Step 4 – Store.  Pour your oil (minus any water or solids that might be at the bottom) into a glass storage container.  You can use any glass jar with a tight fitting lid.

Making the Balm or Salve

The infused oil can be added to beeswax to make a balm or salve.   To each cup of oil, add 1 ½ to 2 Tbsp. beeswax. Over very low heat, or in the top of a double boiler, stir and melt the beeswax. Pour into clean tins or jars. Allow to cool and solidify before covering with lids.

If your balm is too hard for your liking, melt with a little more oil. If it is too liquid, melt with a little more beeswax. Cottonwood oil and balm is especially helpful for swollen arthritic joints and sore muscles.  It has a very fragrant aroma.   It also makes an excellent massage oil for sore muscles.  Because cottonwood is high in antioxidants, it is useful for healing the skin, including sunburn.  The buds are also antiseptic and can be added to other herbal oils to prevent rancidity and molding.

THE USE OF COTTONWOOD BY THE FIRST PEOPLES OF CASCADIA

Many First Peoples believed that Cottonwood was a sacred wood used as an instrument of communication between The Great Spirit who loves us all and humanity.  Many instruments of ceremony were made of cottonwood. According to Pojar and McKinnon the Nuxalk/Kwakwaka’wakw and other Cascadian First People used the sweet inner bark and cambium tissues as food and medicine.  The bark was boiled and the infusion was used for a gargle to treat sore throats (Gunther 1945).  These barks were harvested in late spring.  Many other tribal people collected the buds in the early spring and boiled in deer fat to make a fragrant salve. The gum from the buds was used to treat baldness, sore throats, whooping cough and tuberculosis. The resin from buds were used in a poultice with crushed cottonwood leaves to treat pains and rheumatism.

The gum that exudes from the burls was placed directly on wounds and cuts. A soap and a hair wash were made from the ashes of burned cottonwood.

The wood from the tree was used to smoke fish (mostly inland tribes). The inner bark was used to reinforce other fibers in spinning.  The gum from the spring buds was used to waterproof baskets and boxes. Paint and dyes were made from the yellow and red resins of early spring buds. The Squaxin used the young shoots of cottonwood for making the sweat lodge, and also used them for lashings and tying thongs. (Gunther 1945). The wood and buds were burned down to charcoal and used as ceremonial incense.

Several Cascadian tribes believed the Black Cottonwood had a spirit force that was very powerful and it was reported that the tree moved even when the wind was not blowing.  They would not burn the wood but would often listen to the trees for direction.  Like Black Elk, they listened for the voice of the Cottonwood tree.

Video

From Northstar Bushcraft a re-wilding project located on the Columbia River at Golden British Columbia. They have a very nice and useful website located at http://www.northstarbushcraft.com/

  •  Broadhurst, C. Leigh, Ph.D and Duke, James A. Ph.D, (1998)  Propolis: An Age-Old Medicine, Mother Earth Living, Natural Home, Healthy Life March/April – Viewed on the web 12-01-2012 at http://www.motherearthliving.com/health-and-wellness/inside-plants-8.aspx
  •  Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  •  Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  •  Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  •  Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  •  Tilford, Gregory L., Edible and Medicinal Plants of the West, ISBN 0-87842-359-1

Red Alder (Alnus rubra)

During the storm I dreamt of Red Alder.  I dreamt that the spirit of the tree was leading me away from danger.  Then I woke and saw ruts of the big machines and I cried for the forest.  Soon after the Red Alder came up through the sun-baked soil of the clear-cut. – Ellen O’Shea – Radical Botany

Red Alder Grove along stream

Some plants are trailblazers.  They show up when great change has happened.  They grow in the ruts of human civilization, the mud, the flood tracks and the places where sun and wind prohibit other plants to grow. Red Alder just such a trailblazer. A true pioneer plant.  It shows up to heal, grows fast, stays a short time, then allows the tall conifers, the redcedar and majestic Bigleaf maple and other trees to take over.  It is a friend and healer of the forest. It is a tree that perseveres in the direst of circumstances. Even after massive clear-cutting and wild fire destruction where the forest seems changed forever, the Red Alder will push up out of the graves of other trees and change the soils.  It is an alchemist.  It will attract the bacterium needed to change the acid of riddled sun-parched soils into  the conditions needed to bring back an entire eco-system.  After the Red Alder emerges, the tiny herbs, the ferns and sedges follow.  Soon after that the wildflowers, elderberry shrubs, Indian plum and wild honeysuckle will follow. And then the conifers and larger deciduous trees follow and a whole forest eco-system emerges.

The Red Alder soothes the hardest of earth and entices the fungi, bacteria and nutrients back into the forest floor. The bacterium on its roots fix the nitrogen needed to feed the forest community. A grove of Red Alder will only live about 100 years, just enough time to coax the forest community to come home one more time.  As a healer of humans its bark is used to sooth the acid stomach and gallbladder, clean the lymph glands and bowels, entice the poisons from the skin and open up the lungs.  A poultice of the bark will bring forth the inner poison.

Red Alder wood chips are often used to cultivate eatable and medicinal mushrooms such as the Shiitake.

THE NAME

Clallam  – s’ko’noiltc

Quinault – malp

Swinomish – su-k’uba’ts

Alder is the common name of a genus of flowering plants (Alnus) belonging to the birch family Betulaceae. The English name was derived from the bright rusty red color that develops in bruised or scraped bark. The outside bark is mottled, ashy-gray and smooth, often draped with moss. But just inside is the glorious red used for dye and medicine.

HABITAT

Red alder (Alnus rubra) are the largest species of alder on the west coast of North America.  The tree can grow to 40 feet or more, needs full sun, is a nitrogen fixer, tolerates poor, wet soil and is found in valleys in the Cascadian bio-region as well as the foothills of the Cascade Mountains. Red alder is a fast- growing but short-lived (old at fifty, with a maximum age of about a hundred years).

For years, as the rain forests of the Pacific Northwest were devastated by massive clear cutting of the region, Red Alder was thought to be invasive and was destroyed.   For the first 100 years of European settler decimation, the Red Alder was thought to be scrub, a noxious weed and unnecessary for forest health.  Then in the 1970’s and 80’s as second and third growth Douglas fir tree farms failed to thrive, research showed that an essential part of the forest eco-system was missing.  Red Alder, an amazing nitrogen fixer had been systematically removed from the forests using massive amounts of chemicals and extraction methods of forest management.

With the lack of nitrogen in the forest soils, other native species began to be stunted and attract disease. But as foresters began to study forest re-growth, they noticed that Red Alder was one of the first trees to return to a clear-cut.  They also noticed that as the Red Alder stands thrived, so did the small plants, shrubs, and then other tree species thrive. The Red Alder is a forest healer; it brings life back to much damaged soils.  For soils that have been heavily sprayed with toxic chemicals, the introduction of Red Alder is less successful.

RED ALDER AND NITROGEN FIXING BACTERIUM

An important nitrogen-fixing bacterium in our Cascadian bioregion is Frankia ahni.  Red Alder (Alnus rubra) and other types of alders are the host for this important bacterium. Alder is particularly noted for its important symbiotic relationship with Frankia ahni, an actinomycete, filamentous, nitrogen-fixing bacterium. This bacterium is found in root nodules, which may be as large as a human fist, with many small lobes and light brown in appearance.

I found a great online source for explaining the nitrogen fixing process. “A Nitrogen Fixation: The Story of the Frankia Symbiosis by Peter Del Tredici a Harvard researcher can be found at this link: http://arnoldia.arboretum.harvard.edu/pdf/articles/1995-55-4-a-nitrogen-fixation-the-story-of-the-frankia-symbiosis.pdf

Here is a quote from that document:

“Before atmospheric nitrogen can be used by plants, it must be “fixed,” that is, split and combined with other chemical elements. This process requires a large input of energy and can occur either biologically, within the cells of various bacteria, or chemically, in fertilizer factories or during lightning storms.

Among all living organisms, only bacteria have evolved the complex biochemical mechanisms required for nitrogen fixation. All “higher” plants and animals that are said to fix nitrogen are really only the symbiotic partners of the bacteria that do the actual work.”

Red alder is often found growing near coast Douglas-fir (Pseudotsuga menziesii subsp. Menziesii), western hemlock (Tsuga heterophylla), grand fir (Abies grandis), western redcedar (Thuja plicata), and Sitka spruce (Picea sitchensis) forests. When found along streambanks it is commonly associated with willows (Salix spp.), red osier dogwood (Cornus stolonifera), Oregon ash (Fraxinus latifolia) and bigleaf maple (Acer macrophyllum).

Red Alder leaf

THE LEAVES

Alternate, deciduous (fall off the limb in the autumn), broadly elliptic, and sharp-pointed at the base and tip. The leaf top is dull green and smooth, and the underside is golden-colored and hairy. The leaf margin is revolute, the very edge being curled under, a diagnostic character which distinguishes it from all other alders. The leaf turns yellow in autumn before it falls from the tree.

 

The male and female catkin

THE FLOWER

The flowers are catkins with elongate male catkins on the same plant as shorter female catkins, often before leaves appear; they are mainly wind-pollinated, but also visited by bees to a small extent. These trees differ from the birches (Betula, the other genus in the family) in that the female catkins are woody and do not disintegrate at maturity, opening to release the seeds in a similar manner to many conifer cones. The catkins form in the fall, and then overwinter, ready to open or flower in spring. The female catkin is cone-like, droops slightly, usually in clusters of threes.

The male catkin is slender, cylindrical, hanging in clusters of 3 to 5 from short leafless branches.

THE FRUIT

Red Alder cones or fruit

The fruit is clusters of brownish cones which are quite small (up to 2 cm long). They remain on the trees over the winter and contain oval winged nutlets. About 2000 seeds are normally produced by the cones which are normally spread by the wind but also by the water and birds. The seeds have a viability of about 45%. Seeds are normally dispersed between the months of October and March.

THE BARK

The bark is thin, grey, and smooth often with white patches of lichens.  The bark will turn bright red to rusty red when cut.

As a weaver I often sought the bark of the Red alder as a source of dye.  I peeled back the bark and exposed it to air and it would turn a brilliant red.  As the bark dried the color of the bark changed from red to a slightly golden brown.  I fixed the color using apple cider vinegar.

MEDICINE

Red Alder is a bitter and an astringent (Meyer p.3).  Bark twigs and buds were used. An ointment of the bark was used to cure eruptive skin diseases (Stuhr  p. 21). Catkins are edible and high in protein, but are very bitter in taste and utilized usually on for survival food. The wood is used to smoke cooked food.

The Bark of the Red alder contains anti-inflammatory salicin that metabolizes into salicyclic acid in the body.

Cut of the Red Alder – new (red) and old (golden)

Salicin is related to Aspirin. Red Alder bark is used for relief from poison oak, insect bites, and skin irritations.  The Red Alder bark is used in infusions to treat lymphatic disorders and tuberculosis.

The bark was boiled and drunk for colds, stomach trouble, and scrofula sores. The rotten bark and woody parts were rubbed on the body to ease “aching”. (Gunther p. 27)

The wood was used to make canoes, boxes and paddles and multiple other utility implements.  Like the Western Red Cedar, this tree was widely used by the first people of the Cascadian bio-region. The wood was important because it could be used while still green, seasoned and not split in the sunlight.  The wood of the Red Alder has long been used to smoke salmon.  The bark was used to line baskets for storing wild berries, roots and other foods and herbs.

POLLINATOR AND BUTTERFLY HABITAT

Alder leaves and sometimes catkins are used as food by numerous butterflies and moths. The late winter and spring catkins are beneficial to more than one species of bee,  and depending on nearby habitat may attract other insect pollinators, such as butterflies, hoverflies, and pollinating beetles. If the Red Alder is close by water, the pollinators can be plentiful.

Red Alder is a better butterfly host plant than the Asian butterfly bush, which only provides some nectar, not structure to attach chrysalis, nor leaves for caterpillars after hatching.

If you would like to learn more about native plants and the pollinators they attract, order the wonderful book  put out by the Xerces Society called “Attracting Native Pollinators”.  The book is coauthored by four Xerces Society staff members Eric Mader, Matthew Shepherd, Mace Vaughan, and Scott Black in collaboration with Gretchen LeBuhn, a San Francisco State University botanist and director of the Great Sunflower Project.  More on the book go here – http://www.xerces.org/announcing-the-publication-of-attracting-native-pollinators/

VIDEO  AND ONLINE RESOURCES

Article about Red Alder healing capacity by Kiva Rose, herbalist- http://bearmedicineherbals.com/alder-tree-of-transformation-healing.html

How to identify a Red Alder – http://www.youtube.com/watch?v=tBdmL5A0_3c

Interactive Distribution Map of Alnus rubra – http://www.plantmaps.com/nrm/alnus-rubra-red-alder-native-range-map.php

REFERENCES

  • Del Tredici, Peter (1995) Nitrogen Fixation: The Story of the Frankia Symbiosis, Harvard University, Arnoldia Arboretum – viewed on the web on November 9, 2012 – http://arnoldia.arboretum.harvard.edu/pdf/articles/1995-55-4-a-nitrogen-fixation-the-story-of-the-frankia-symbiosis.pdf
  • Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washington Press.
  • Meyer, Joseph E. (1918) (Revised 1970) The Herbalist, Meyer Books Publishing
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Stur, Ernst T. (1933) Manual of Pacific Coast Drug plants, Ernst Theodore Stuhr Papers, Oregon State University Archives, Corvallis, Oregon.
  • Tilford, Gregory L., Edible and Medicinal Plants of the West, ISBN 0-87842-359-1

BIG LEAF MAPLE (Acer macrophyllum)

Trees are sanctuaries. Whoever knows how to speak to them, whoever knows how to listen to them, can learn the truth. They do not preach learning and precepts, they preach, undeterred by particulars, the ancient law of life. -       Hermann Hesse, Trees: reflections and poems

Dear ones,

I have struggled for weeks for the words to express my love of the trees. My last attempt while teaching about conifers was to create graphs, with just the fine points, of how to possibly experience conifers.  I spent hours trying to choose just a few words to express the cones, needles, wildlife, habitat, healing qualities and ethnobotany of each tree. I wanted you to carry the graph into the forest and touch each tree.

But somehow it felt empty.  I did not have enough space to express the soul of the tree.  The one thing above all else is that I want you to know that the trees are alive! They are alive in a way that humans are alive.  And we humans are decimating them.

Now, I want teach you about 12 deciduous trees that live in the Cascadian bio-region. There are far more than 12 of course. But these 12 are my friends.  I will again teach in essay form- as a story teller. That is what Great Spirit who loves us all wants me to do. Tell you the story of the tree and how we are related.  I will attempt to convey what the trees have taught me, rather than what science has collected about the trees.  I want you to fall in love with the trees.  I want you to go outside and embrace the trees as you would a lover.  I want you to cherish the trees so much that you will not allow them to be decimated. I will teach you the indigenous name as well as the common English language and Latin name of each tree so that you can learn how humans related to the tree for thousands of years.

So let us begin

BIG LEAF MAPLE (Acer macrophyllum)

The Name- before the Europeans came and renamed everything, this tree was called many things.  It was a protector, a habitat creator, a source of food,shelter, medicine and tools.  It was a wood used to make canoe paddles and ceremonial masks and rattles. It was a sacred being in the forest; it was much revered. Here are a few of the names that the First Peoples of Cascadia used to identify this tree.

sqəlelŋəxʷ = Salish =Any large Tree

K’u’lawi = Chehalis

Cuk’ums = Cowlitz

Stsla’act = Klallam

K!amali’tc = Lummi

K!o’luwe = Skokomish

Two years ago I lived in an older apartment complex near Oregon State University in Corvallis, Oregon where there was a still-standing grove of Big Leaf Maple trees.  The large trees had been on the land for over 200 years and were part of the original farmstead that graced the area 100 years ago.  A developer bought the property in 2009, tore down the trees in 20122, and built a shambles of cheap “student” apartments.  My heart was broken.  I had known these trees since my childhood.   I moved away and took my potted garden with me.  Much to my delight many of my potted native plants and herbs pots began to sprout Big Leaf maples.  The trees near my apartment had dispersed their “Samara” or winged seeds to my pots and I unknowingly took them away from the slaughter.  Today they still travel with me as I search for land to settle on.  They are getting quite tall and I may have to find a safe haven for them in a nearby forest.  It does my heart good to know that I took the offspring of my childhood friends to a new life. I hope that I can also find a place to plant myself near these young ones and watch them grow.

THE BIG LEAF MAPLE – A Mother Tree

These trees are magnificent large trees that can grow over 100 feet tall and branch out another 100 feet as well.  The tree offers shelter to diverse wildflowers that need shade and moisture. Wherever you find this forest of Big Leaf Maple you will find Bleeding hearts, ferns, Larkspur, Trillium, Salmon berry, Thimble berry, Indian plum, and Elder berry.  Vine maple and other native shrubs are found growing under this tree. The branches often harbor a completely new eco-system of ferns, mosses, lichen and herbs. Numerous birds nest in the branches and the knots and cave-like holes found in its bark.

The Big Leaf Maple is the “mother tree” of the forest.  Much like the Western Red Cedar in the conifer forest, the Big Leaf Maple attracts the conditions, the plants and fungi that create a healthy viable eco-system.

I used to climb these big trees.  I know these trees. The trees can live hundreds of years.  Their outstretched large limbs made a wonderful place to hang a tree cocoon (canvas tent hung in a tree).  The wildlife attracted to the tree was phenomenal.   One of my favorite things to do in the spring was to visit the blooming flower of Big Leaf Maple.  I stood under the tree and felt the light breeze of the thousands and thousands of bees and other pollinators visiting the tree for nectar. There was so much pollen distribution that it fell downward and peppered the ground with a light yellow dusting.  I came away covered in pollen.  It was such an invigorating experience.  I often built fairy altars under the tree in thanks giving for its great beauty and vitality.  White Oak (Quercus garryanna) grew on the edge of the forest.  Red cedar and other conifers speckled the forest.  Squirrels, deer, blue jays and wild doves moved throughout the forest.  Wild rabbits and raccoons ran along the well-traveled animal trails.

THE RACEME – The flower of the Bigleaf Maple

The Raceme- is a pendulum-like flower stalk that hangs down from a short stalk attached to an early spring leaf bud. It is unbranched and it’s yellowish to light green flowers open up to an array of wild and domesticated bees and other pollinators.  The Bigleaf maple begins to flower at about 20 years of age.  Insects and bees pollinate the tree and produce about 1000 pollen grains per flower. The flower pollen and other secretions are quite sweet. The nectar-rich flowers were eaten raw in the spring by the Sannich First peoples.  It was said to be an over-all spring tonic and was highly nutritious. The sticky gum of the spring bud was used as a hair tonic.

THE LEAF

It has the largest leaves of any maple, typically 15–30 centimeters (0.49–0.98 ft) across, with five deeply incised palmate lobes.  They are dark green above and lighter green below. The leaf will turn yellow in the fall.

The large leaves were used under layers of food while cooking on an earthen oven.  The leaves were used to cover food cooking in pits. The leaf stalk has a milky juice when cut. This is the sticky gum used in hair tonic.

 

THE SEED- SAMARA

My favorite wild seed – called a “whirly-gig” by children and more playful adults. The fruit is a paired winged seed called a samara. Each seed is approximately 1–1.5 centimeters (0.39–0.59 in) in diameter with a 4–5 centimeters (1.6–2.0 in) wing.  Wings help to disperse the seeds throughout the forest. The whirly-seeds or double-winged samara, as well as spring’s leaf-buds, are a major food source for squirrels, birds, & other wildlife. The First Peoples of the Salish Coast ate the young sprouted seeds as food.

THE BARK

In the more humid parts of its range, as in the Olympic National Park, its bark is covered with epiphytic moss and fern species. The species that grow upon the branch of the Bigleaf maple can form canopy roots deep into the adhering mosses. The mosses are often so deep they create their own soil and their own ecosystem. The bark of the tree is green when young and grows grey-brown and ridged after a few years.

HABITAT

 This species of maple is found in dry to moist sites, often with Douglas-fir. Found in low to middle elevations in its range.  The trees are found along riverbanks and in somewhat early spring damp areas.  The trees will begin to rot if they stand too long in flooded areas, but they are often found in native rainforests.

ETHNOBOTANY

In many coast Salish languages, its name actually means “paddle tree” because the people are able to carve paddles out of its wood due to its great size. Some other helpful tools fashioned from the Big-Leaf Maple include dishes, spoons, hairpins, combs, and scouring pads.The inner bark was eaten in small quantity as it was constipating. The inner bark was also used to make baskets, rope and whisks for whipping soopolalie berries. Some First Peoples ate young maple shoots raw, and also boiled and ate the sprouts when they were about 3 cm tall. The leaves, like Skunk Cabbage leaves, were used as a base for drying berries. The large leaves were also used for storing food during the winter or burned in steaming pits to add flavor to food.

The wood was used for spindle whorls and various other implements such as combs, fish/duck spearheads, and fish clubs. The ends of branches and strips of bark were used in basketry.  The wood was used to make masks and rattles used in ceremony.

The sap was boiled and made into sweet maple syrup and sugar by some First Nations.

POLLINATORS ATTRACTED TO BIGLEAF MAPLE

 The Bigleaf maple is an important early blooming tree.  The tree blooms in March and is essential food for many wild bees, honey bees and other pollinators that are now threatened because of habitat and plant loss.

Here is a short list of wild bees that need this tree for food and habitat:

Solitary bees – Osmia aglaia – O. aglaia are metallic blue, green or rust/bronze in color. They nest in tunnels in wood about 3/8 – 1/4 inches in diameter. They are active as adults in late spring, while Rubus is in bloom

Osmia lignaria- mason orchard bee

Blue Orchard bees – Osmia lignaria, in the Portland area and in WashingtonState are more attracted to Big leaf Maple, Acer macrophyllum

 

And of course the honey bee-

A short video looking at the structure and habitat of the Big Leaf Maple

References

  • Gunther, Erna (1973) revised edition Ethnobotany of Western Washington, University of Washington Press, Seattle and London.  pp. 39
  • Moerman, Daniel E.(1998) Native American Ethnobotany, Timber Press, Portland and London, pp.38
  • Pallardy, Stephen G. (2008) Third Edition,  Physiology of Woody Plants, Academic Press, Burlington, MA – Elsiver Inc. pp. 90
  •  Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia

Butterfly kiss

Thank you my dear blog readers for your support through the last couple of years.

I have very much enjoyed writing about native plants, botany, and ethnobotany.

I will soon be updating my blog with the next essay on trees.  I will be discussing the 12 most important deciduous trees in the Cascadian bioregion including identification strategies, leaf shapes, seeds, range, wildlife habitat and ethnobotany.

See you soon….  Thanks again for all your views!

Part one:  Conifers

A few minutes ago every tree was excited, bowing to the roaring storm, waving, swirling, tossing their branches in glorious enthusiasm like worship. But though to the outer ear these trees are now silent, their songs never cease. –  John Muir

As a young person I developed a deep love and bond with trees.  I spent hours climbing trees, swinging in the boughs of a large fir or sitting high in an oak tree.  I loved the ability to see long distances across the landscape.  I found many interesting things in trees.  Bird nests, ferns, nuts, acorns, mistletoe and insects all fed my imagination. I found incredible peace in the treetops.  I would have been very happy to have lived in a tree house.

So now I teach you what I know about trees.

I have spent months now teaching you basic botany.  I have focused on the parts of the plant.  I want to begin to teach you how to go into the forest and find plants. I will teach you about the trees first.  I will be focusing primarily on the trees found in the Cascadian bio-region-that area found from Northern California, through Oregon and Washington state and up through British Columbia.  The Cascade mountain range separates the Western regions from the Eastern Regions but mant of the areas share similar tree and plant communities.

There are of course some amazing micro-ecosystems found in Cascadia.  For instance the eco-system of Northern California and Southwestern Oregon are very different from the eco-system of Western British Columbia and Western Washington.  More on that later.

Trees have always been the marker that I use to find the plants I am seeking. Why?

Because I can look out across the horizon and see the tall trees, the old ones that will have the most to share as far as a finding plant communities.  For instance, when I am looking for wild orchids or lilies, I will look to the horizon to find a large Douglas fir old growth or a very tall Western Red cedar.

Trees are the anchor for plant communities.  They create habitat, keep plants fed and watered, provide shelter for pollinators and animals that carry the seeds throught the forest.  Large Douglas fir and Western Redcedar have an outreach affect that can cover miles of terrain.  The mycelium connected through the roots of big trees support thousands and thousands of varieties of plants. Communication between the species found under big trees has been studied and now documented.

University of British Columbia professor Suzanne Simard, has discovered through her research that “trees in a forest ecosystem are interconnected with the largest, oldest ‘mother trees’ serving as hubs”.  This research has found that all trees in dry interior Douglas-fir (Pseudotsuga menziesii var. glauca) forests are interconnected, with the largest, oldest trees serving as hubs, much like the hub of a spoked wheel, where younger trees establish within the mycorrhizal network of the old trees.

The research also found that all the forest plants had a much better chance of survival if they were linked into the network of old trees.  It was found that increased survival was associated with below-ground transfer of carbon, nitrogen and water from the old trees. This research provides strong evidence that maintaining forest resilience is dependent on conserving mycorrhizal links, and that removal of hub trees could unravel the network and compromise regenerative capacity of the forests. (Simard 2013)

There are two different groups of trees – conifers and deciduous.  Conifers are the evergreens.  And, deciduous are the trees that drop their leaves in the fall and re-grow green leaves in the spring.

THE 12 MOST IMPORTANT CONIFERS IN THE WESTERN CASCADIAN BIO-REGION – and how to identify them.

The trees I will be teaching you about are all found west of the Cascades.  Later I will make some charts of important trees found east of the Cascades but still in the Cascadian bio-region. The charts below include information about what the tree needle, cone and general shape look like. This information should help you identify them.  I have included information about wildlife that use the tree for survival and I have included ethno-botanical information about the tree.  I have created some graphs that you can print out and make as large as you like. They are stored as graphics on this web page.   I hope that you will print them out, take them into the forest and try to identify the trees as you walk. I hope that you will fall in love with the trees as I have.

REFERENCES

  • Coastal Douglas-Fir Forests and Wildlife – Woodland Fish and Wildlife December 1992 viewed online July 20, 2012 – http://www.woodlandfishandwildlife.org/pubs/coastal-df.pdf
  • Gilkey, Helen M. & Dennis, L. J. (2001) Handbook of Northwestern Plants. Corvallis, OR: OSU Press
  •  Gunther, Erna. (1945) (Revised 1973) Ethnobotany of Western Washington. Knowledge and use of Indigenous plants by Native Americans, University of Washinton Press.
  • Moerman, Daniel E. (2004) Native American Ethnobotany. Portland: Timber Press.
  • Old Growth Forest Wiki- http://en.wikipedia.org/wiki/Old-growth_forest
  • Pojar & McKinnon, (1994) Plants of the Pacific Northwest Coast, Washington, Oregon, British Columbia & Alaska, Lone Pine Publishing, Vancouver, British Columbia
  • Simard, S.W., Martin, K., Vyse, A., and Larson, B. (2013) Meta-networks of fungi, fauna and flora as agents of complex adaptive systems Managing World Forests as Complex Adaptive Systems in the Face of Global Change. Edited by Puettmann, K, Messier, C, and Coates, KD, Earthscan, Taylor & Francis Group, London. In press.
  • Simard, Suzanne – Trees Communicate With One Another, Connected by Fungi (Video)  http://www.treehugger.com/natural-sciences/trees-communicate-one-another-connected-fungi-video.html

Follow

Get every new post delivered to your Inbox.

Join 70 other followers

%d bloggers like this: